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Abstract In this work is presented an overview about 
mathematical methods of differential dynamical 
systems in circuits theory. These methods are shortly 
presented and there are given indications for/about the 
applications. 
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I. INTRODUCTION 
 

Many physical phenomena are modeled by nonlinear 
systems of ordinary diferential equations. An important 
problem in the study of nonlinear systems is to obtain 
exact solutions and explicitly describe traveling wave 
behaviors. Modern theories describe traveling waves 
and coherent structures in many fields, including general 
relativity, high energy particle physics, plasmas, 
atmosphere and oceans, animal dispersal, random 
media, chemical reactions, biology, nonlinear electrical 
circuits, and nonlinear optics. For example, in nonlinear 
optics, the mathematics developed for the propagation 
of information via optical solitons is quite striking, with 
extremely high accuracy. It has been experimentally 
veried, with a span of twelve orders of magnitude: from 
the wavelength of light to transoceanic distances. It also 
guides the practical applications in modern 
telecommunications. Many other nonlinear wave 
theories mentioned above have also achieved similar 
success. 
 

II. THE DUFFING EQUATION 
 

The Duffing equation is a non-linear second-order 
differential equation. It is an example of a dynamical 
system that exhibits chaotic behaviour. The equation is 
given by 

        txxxx ωγαβδ cos3...
⋅=+++               (1) 

or as a system of equations. 
A periodic orbit corresponds to a special type of 

solution for a dynamical system, namely one that repeats 
itself in time. A dynamical system exhibiting a stable 
periodic orbit is often called an oscillator.  

Figure 2 shows the periodic orbit that exists for the 
vector field:  

( )22 yxxyx
dt
dx

+−−= αα  

                     ( )22 yxyyx
dt
dy

+−+= αα                  (2) 

 
Fig. 1. Oscillator circuit 

 

 
Fig.2. The periodic orbit     

       
where α > 0 is a parameter. Transforming to radial 
coordinates, we see that the periodic orbit lies on a circle 
with unit radius for any α > 0:  

                        ( )21 rr
dt
dr

−= α , 1=
dt
dθ                     (3)   

This periodic orbit is a stable limit cycle for α > 0 
and unstable limit cycle for α < 0. When α = 0, the 
system above has infinite number of periodic orbits and 
no limit cycles. For the Example above, the radial line 
given by θ = 0 is a Poincare section, parameterised by r. 

The corresponding Poincare map ( )ii rgr =+1 along 
this section may be found by explicitly integrating the 
vector field:  
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                             ( ) ( )[ ] 2124 11
−−− −+= ii rerg πα        (4) 

with fixed point 1=fr corresponding the periodic orbit. 

Linearizing we find ( ) πα4' −= erg f . So, the periodic 
orbit is stable for any α > 0 and is unstable for any α < 0.  

An alternative way to determine the stability of a 
periodic orbit is to use Floquet theory, which involves 
the time-dependent (and T-periodic) vector field 
linearized around the periodic orbit. Solutions to these 
linearized equations are used to define n Floquet 
multipliers characterizing the growth or decay of 
perturbations to the periodic orbit. It can be shown that 
the (n-1) eigenvalues of gD are equal to (n-1) of the 
Floquet multipliers of the periodic orbit; the remaining 
Floquet multiplier is equal to unity and corresponds to a 
perturbation along the periodic orbit [Guckenheimer and 
Holmes,1983]. The determination of Floquet multipliers 
or the eigenvalues of gD typically must be done 
numerically.  

Given a point fx on the periodic orbit Γ as discussed 

above, the eigenvalues of the matrix ( )fg xD  can be 
used to partition the (n-1) -dimensional subspace Σ  into 
a direct sum of subspaces ucs Σ⊕Σ⊕Σ , 
corresponding to eigenvalues with modulus less than 1, 
equal to 1, and greater than 1, respectively. If sections 

xΣ are chosen to vary continuously over different base 
points Γ∈x , then concatenations of the corresponding 
subspaces u

x
c
x

s
x ΣΣΣ ,,  form vector bundles over Γ. 

Stable, centre and unstable manifolds of Γ can be 
defined as graphs over these vector bundles.  

For a non-autonomous vector field ( )txfdtdx ,=  
with ( ) ( )τ+= txftxf ,,  for some 0 < τ < ∞, the 
calculation of the stability properties of a periodic orbit 
with period qpT τ= , where p and q are integers can 
be done by considering a stroboscopic map which takes: 

( ) ( )qptxtx τ+→                        (5)                  
Stability properties follow from this map eigenvalues.  

To determine the stability properties of a periodic 
orbit for a mapping ( )ii xgx =+1 , one can exploit the 
fact that a point 0p on a period-k periodic orbit of the 

map g is a fixed point of the map kg . The stability 

properties of this fixed point of kg are the same as the 
stability properties of the periodic orbit of the map g 
[Guckenheimer and Holmes, 1983].  
 

III. THE UNFORCED SYSTEM 
 

In this section, the dynamics of the unforced system 
( 0=γ ) is examined. When there is no damping 
( 0=δ ), the Duffing equation can be integrated as: 

                ( ) .
4
1

2
1

2
1 42. 2 constxxxtE =++= αβ          (6)  

Therefore, in this case, Duffing equation is a 
Hamiltonian system. The shape of E(t) for α >0  can be 
observed to be single-well potential for β>0 and double 

-well potential for β<0. Trace of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

.
, xxx moves on 

the surface of E(t) keeping E(t) constant. 

 
Fig 3: The shape of  E(t) and schematic trajectories of 

the Duffing oscillator in the ( ( )
.

,, tExx ) space for α > 0. 
When δ > 0, E(t) satisfies:  

                                 ( ) 0
. 2 ≤−= x

dt
tdE δ                       (7) 

therefore, the trajectory of x moves on the surface of  
E(t) so that E(t) decreases until x converges to one of the 

equilibrium where 0
.

=x . For α > 0, β > 0, and δ > 0, 
the only equilibrium is ( )0,0≡x , and E(t) satisfies  

• ( ) 0=tE  if and only if xx = ,  

• ( ) 0〉tE  and ( ) 0
.

〈tE  for xx ≠ .  

Therefore, E(t) is a Lyapunov function and x  is 
globally asymptotically stable in this case. On the other 
hand, for α > 0, β < 0, and δ > 0, there are three 
equilibrium as shown, two of which are at the bottoms 
of E(t) and one of which is at its peak. In this case, 
almost all the initial conditions converge to one of the 
equilibrium at the bottoms, except for the initial 
conditions on the stable manifold of the equilibrium at 
the peak.  

The equilibrium of the Duffing oscillator for 

0=γ can be obtained by substituting 0
.

=x to equation, 
namely, 

( ) 02 =+ xx αβ                        (8) 
Therefore, the point x = 0 is always an equilibrium. 
Moreover, when 0<βα  two equilibrium points 

αβ /−±=x  appear. The stability of this equilibrium 
can be understood by analysing the eigenvalues of the 
Jacobian matrix of the equation. Equation for 0=γ can 
is: 
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⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
3.

.

.
xxx

x
x

x

dt
d

αβδ
                   (9) 

and the Jacobian matrix ( )xDF of the right-hand side is 
calculated as:  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

=
δαβ 23

10
x

xDF                (10) 

Therefore, the eigenvalues of ( )xDF for the equilibrium 
0=x is:  

                          
2

42 βδδ
λ

−±−
=                       (11) 

and it is found that this equilibrium is stable for 0≥β  
and unstable for β<0. On the other hand, the eigenvalues 
of the equilibrium αβ /−±=x  are: 

                          
2

82 βδδ
λ

+±−
=                       (12) 

and it is found that these equilibrium are stable for α > 0 
and β < 0, and unstable for α < 0 and β > 0.  

Here we consider the response of the Duffing 
oscillator to a weak periodic forcing. First, by applying 
transformations 2

0ωβ = , εαα → , εγγ →  and 
εδδ →  to equation, we obtain:  

                  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−−=+ txxx ωγαδεω cos

. 32
0

..
         (13) 

Because 02
0 ≥= ωβ , describes the response of a weakly 

non-linear spring to a weak periodic forcing. In the 
following, we find an almost sinusoidal solution of 
frequency 0ωω ≅ . To make electrical circuits described 
by equation, active circuit elements with the cubic non-
linear property, ( ) αυγυυφ −== 3i , is required, where 
i and υ are current and voltage, respectively. In 1920s, 
van der Pol built the oscillator using the triode or 
tetrode. After Reona Esaki [1925] invented the tunnel 
diode in 1957, making of the van der Pol oscillator with 
electrical circuits has become much simpler.  

Using the tunnel diode with input-output relation: 
( ) ( ) 00 IEi t +−== υφυφ                (14)          

the equation for the circuit shown is written as follows: 

( )[ ]WV
C

V −−= φ1.
                       (15) 

                                      V
L

W 1..
=                               (16)                                                 

This can be rewritten as:  

                ( ) 0131 .2..
=+−− V

LC
VV

C
V γα             (17)     

Introducing new variables Vx αγ3= , LCtt ='  

and αε CL=  the relation can be transformed into an 
equation. As shown in the previous section, when ε  is 
large, the period of oscillation is proportional to ε . 
Thus, the original system has a period equal to 

αα LLCT =∈ . Because α has an order of the 
reciprocal of resistance r, rLTα  is obtained. RL is 
the time constant of relaxation in LR circuit; therefore, 
the name of "relaxation oscillation" is justified. The 
electrical circuit elements with the non-linear property 
can also be realized using operational amplifiers. By this 
method, many researches have been done to study the 
non-linear dynamics in physical systems.  

A response of the system to a periodic forcing with 
10=inT and 2.1=F .Van der Pol had already examined 

the response of the van der Pol oscillator to a periodic 
forcing in his paper in 1920, as follows: 

               ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+−−

inT
tFxxxx πε 2cos1

.2..
            (18)    

There exist two frequencies in this system, namely, 
the frequency of self-oscillation determined by ε  and 
the frequency of the periodic forcing. The response of 
the system is shown for 10=inT and 2.1=F . It is 
observed that the mean period outT  of x often locks to 

nmTin , where m and n are integers. It is also known 
that chaos can be found in the system when the non-
linearity of the system is sufficiently strong. Figure 4 
shows the largest Lyapunov exponent and it is observed 
that chaos takes place in the narrow ε  ranges.  

Van der Pol and Van der Mark [1927] considered an 
electrical circuit composed of a resistance, a capacitance 
and a Ne lamp and they heard the response of the system 
by inserting the telephone receivers to their circuit. 
Besides the locking behaviours, they heard irregular 
noises before the period of the system jumps to the next 
value. They stated that this noise is a subsidiary 
phenomenon, but today it is thought that they heard the 
deterministic chaos in 1927 before Yoshisuke Ueda 
[1961] and Edward Lorenz [1963]. Nevertheless, Van 
der Pol did not identify the structure underlying a 
chaotic attractor in the phase space. Lorenz published a 
picture of a chaotic attractor in the phase space in the 
early 60's and Ueda did in the early 70's.  

First, we introduce the Van der Pol transformation: 

                         txtxu ω
ω

ω sincos
.

−=                       (19) 

                 tsxtxcv ω
ω

ω cossin
.

−−=                 (20) 

where the ( )vu, plane called Van der Pol plane rotates 

around the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

.
, xx  plane clockwise. On this plane, 

sinusoidal solutions of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

.
, xx of frequency ω are 

represented as equilibrium. By differential equations and 
by substituting Ω≡− εωω 2

0
2  to them, we obtain:  

( )[ ( )++−−Ω−= ttuttuu ωυωωδωυω
ω
ε cossinsincos

.

            ( ) ] ttttu ωωγωυωα sincossincos 3 −−+      (21) 
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( )[ ( )++−−Ω−= ttuttu ωυωωδωυω
ω
ευ cossinsincos

.
 

           ( ) ] ttttu ωωγωυωα coscossincos 3 −−+      (22)    

 
Fig. 4: The frequency response function for the Duffing 

oscillator for  10 =ω , 2.0=εδ  and  5.2=εγ . Solid and 
dotted lines correspond to the stable and unstable equilibrum. 

 
Averaging equations (21) and (22) over the period 
ωπ2 , we obtain: 

            ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−Ω+−= υυαυωδ

ω
ε 22.

4
3

2
uuu         (23) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −++−Ω−= γυαωδυυ

ω
ευ uu 22.

4
3

2
   (24) 

or in polar coordinates 22 υ+= ur  and 
( )uarctg υφ = : 

                          ( )φγωδ
ω
ε sin

2

.
−−= rr                   (25)                     

                 ⎟
⎠
⎞

⎜
⎝
⎛ −+Ω−= φγα

ω
εφ cos

4
3

2
3.

rrr           (26)      

By finding the equilibrium of equations (25) and 
(26), the response of the system to a weak periodic 
forcing can be analysed. When 0=α  the frequency 
response function shows a peak of the usual resonance 
at 0ωω ≅ , and, when 0≠α , this peak is curved. For a 
hardening spring (α > 0), the peak curves to the right, 
and to the left for a softening spring (α < 0). By using 
Van der Pol plane rotating with frequency kω and 

defining Ω≡− εωω 2
0

22 k , the k-th order subharmonics 
can also be analysed [Holmes and Holmes, 1981].  

When the state of a dynamical system can be 
specified by a scalar value 1ℜ∈x then the system is 
one-dimensional. Often, only a subset of the phase line 

1ℜ corresponds to physically meaningful states of the 
system, and it is often more natural to consider one-
dimensional phase spaces in the form of intervals and 
circles. For example, the system could be a chemical 

reaction characterized by the concentration of a reagent 
or an RC-circuit characterized by the voltage across the 
capacitor. Notice that the former case, only non-negative 
values of 1ℜ can be used, so the phase space is [0, ∞).  

One-dimensional systems are often given by the 
ordinary differential equation of the form ( )xfx =' , 

where dtdxx ='  is the derivative of the state variable x 
with respect to time t. This ODE is autonomous, i.e., f 
does not explicitly depend on the time t. The phase line 
of a one-dimensional ODE is partitioned by the 
equilibrium (points where f(x) = 0) and trajectories that 
connect the equilibrium. Stability of the equilibrium is 
determined by the directions of trajectories, which 
depend on the sign of the right-hand side function f(x). 
One does not need to solve this equation, or even know 
the exact details of the function f(x), to predict the 
dynamics of the system and its dependence on the initial 
condition; it is apparent from the phase portrait.  

One-dimensional systems can also be given by the 
iterated mapping in the form: 
                                    ( )tt xfx =+1                           (27)                         
where the state at time (t+1) is a function of the state at 
time t. Phase portraits of such systems can be quite 
complicated, especially when the dynamics is chaotic. 
One-dimensional state spaces can also be more 
complicated, like graphs or dendrites.  
 

IV. CONCLUSIONS 
 

Differential Dynamical Systems begins with 
coverage of linear systems, including matrix algebra; the 
focus then shifts to foundational material on nonlinear 
differential equations, making heavy use of the 
contraction-mapping theorem. Subsequent chapters deal 
specifically with dynamical systems concepts-flow, 
stability, invariant manifolds, the phase plane, 
bifurcation, chaos and Hamiltonian dynamics.  
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