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Abstract – The wealth of genomic data currently 
available in online databases has caused a need for 
new algorithms and analysis techniques to interpret 
genomic data. In this paper we explore techniques for 
locating critical genomic data in protein sequences and 
for estimating the similarity between proteins. By 
converting genomic data into numeric sequences 
signal processing methods can be applied to process 
the resulting information. We demonstrate the use of 
the Short-Time Fourier Transform and the 
Continuous Wavelet Transform in locating important 
amino acid properties contained in protein sequences. 
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I. INTRODUCTION 
 

Genomic analysis is a highly cross-disciplinary field, 
which will offer many significant scientific and 
technological endeavors in the 21st century, because of 
the vast information that is revealed from sequencing the 
genomes of living organisms[1]. 

Genomic information is digital represented in the 
form of sequences of which each element can be one out 
of a finite number of entities. Such sequences, as DNA 
and proteins, can be mathematically represented by 
character strings, in which each character is a letter of an 
alphabet. In the case of DNA, the alphabet is size 4 and 
consists of the letters A, T, C and G; in the case of 
proteins, the size of the corresponding alphabet is 20. 

If we properly map a character string into one or 
more numerical sequences, then the digital signal 
processing provides a set of novel and useful tools for 
solving highly relevant problems from genetic field. 

For example, both the magnitude and the phase of 
properly defined Fourier transforms can be used to 
predict important features like location and certain 
properties of protein coding regions in DNA. Time-
frequency representations offer information concerning 
the spectral content of the non-stationary signal at every 
moment of time. In the case of bio molecular sequences, 
we want the spectrograms to simultaneously provide 
spectral information for all 4 basic characters: a, t, c, g. 
Using vertex spaces mathematics techniques can be 
reduced the number of variables from 4 to 3. 

The three-dimensional structure of a protein is 
important because protein structure is linked to protein’s 

function. In order to affect a function on a cell, it is not 
uncommon for a protein to have to dock a specially 
shaped section of its three-dimensional structure into a 
specifically shaped receptor on a target cell. In short, 
many proteins have a site on them that initiate, mediate 
or terminate a particular biological action. 

Some international teams working on this subject 
have established physic mathematical models for protein 
analysis. The basis of this discovery is connected to the 
fact that there exists a significant correlation between 
the spectra of numerical representations of amino acids 
and their biological activity [2]. More specifically, the 
biological function of a protein is characterized by 
certain frequencies of its signal representation [3].  

This type of analysis first involves converting the 
amino acids that constitute a protein into a “discrete time 
series.” The position of an amino acid in the sequence 
can be thought of as the time. After the conversion of 
the amino acid sequence is made into the protein time 
(space) series signal (which we call a “protein signal”) 
the signal is analyzed to locate the dominant 
frequencies.  

In this study we use the Continuous Wavelet 
Transform (CWT) and the Short-Time Fourier 
Transform (STFT) to perform time-frequency analyses 
of proteins. These two transforms have the advantage of 
presenting information about space (time) that in our 
case is associated to a particular amino acids location in 
a protein and we are consequently able to identify the 
active amino acids contributing to the characteristic 
frequencies of the proteins.  

 
II. GENERALITIES 

 
1. Hemoglobin  
Respiration in living cells requires oxygen. Oxygen 

enters the human body through the pulmonary system 
and has to be carried to cells all over the body. 
Hemoglobin is the protein found in red blood that carries 
oxygen to most of the cells the body.  

In human adults hemoglobin is a protein with a 
quaternary structure composed of two sets of two 
identical subunits. The two alpha subunits are each made 
up of 141 amino acids and the beta subunits are made up 
of 146 subunits each. The most important part of each 
subunit is its hemmed group. The hemmed group is a 
cofactor (a non-protein compound required for the 
proper functioning of certain proteins) with a central 
iron atom. An oxygen molecule binds reversibly to each 
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subunit via its hemmed group; consequently, each 
molecule of hemoglobin can carry four molecules of 
oxygen. Upon reaching its destination, hemoglobin 
unloads the oxygen molecules.  

 
2. Myoglobin  
Myoglobin is similar in function to hemoglobin 

except that its function is to store oxygen in muscle 
cells. Diving animals like seals and whales often spend 
extended periods of time underwater and as such are not 
able to take in oxygen through their nostrils and into 
their pulmonary systems as they normally do on land. In 
times like these diving animals rely heavily on 
myoglobin for oxygen. Myoglobin is also found in the 
skeletal and cardiac muscle of non-diving animals. 
Human myoglobin consists of one peptide chain 
consisting of 154 amino acids. It only has one hemmed 
group and consequently can only store one molecule of 
oxygen. 

 
3. Time-frequency representations used to analyze 

genomic sequences 
To obtain our sequences, the proteins were converted 

into a “time series” of consecutive amino acids in the 
protein. In the application of signal processing 
techniques to the sequences, the sampling rate can be 
assumed to be 1 since the distance between amino acids 
is about 3.8Å.  

To obtain the time-frequency representations of the 
DNA sequence the protein sequence needs to be 
converted into a numeric form that can be further 
processed using digital signal processing methods. In a 
DNA sequence of length N, assume that we assign the 
numbers a, t, c, g to the characters A, T, C, G, 
respectively. A proper choice of the numbers a, t, c and 
g can provide potentially useful properties to the 
resulting numerical sequence [ ].nx  One of the simplest 
assignments is the following one [1]: 

 
.j1g,j1c,j1t,j1a +−−=−−=−=+=     (1) 

 
The choice of values can be adjusted obtaining 

different signals that can be processed to extract 
different properties of the genomic sequence. Generally 
the signals that are obtained with this method are non-
stationary signals, with parameters changing in time. 
Time-frequency representations are the best tools when 
nonstationary signals are analysed. 

As it was noticed by many researchers coding 
regions present a  period-3 behavior, that can be easily 
be detected using spectral analysis. This property can be 
used to detect coding regions in the genomic sequences, 
and even to make predictions on the role of the coding 
region. To perform gene prediction based on the period-
3 property, some indicator sequences for the four bases 
are defined then the DFTs of short segments of these are 
computed. To obtain the DNA spectrograms we used the 
Short-Time Fourier Transform (STFT). For this 
representation is calculated the Discrete Fourier 
transform (DFT) of a sequence from the signal, using a 

narrow window that slides over the whole existing time 
domain. Thus, is provided a localized measure of the 
frequency content for some moments of time[10]. 

                        

∫
+∞

∞−

⋅⋅= τττω ωτ dxtTF STFT
x

j-et)-()(),( w
      (2) 

where x(t)∈L2® and w(t) is called “time window”. 

At instant t, 
STFT

xTF is the Fourier transform of x(t) 
sequence multiplied with w(τ-t) window. Because this 
window will eliminate all the x(t) characteristics that are 

place outsides the extreme vicinity of t, 
STFT

xTF  will 
define the “local spectrum” concentrated around x(t). 
Taking into account all the t values between (-∝, ∝) will 
be found the entire x(t) spectral content. 

If the window is “Gaussian’ type then STFT will be 
called Gabor transform. Depending on the application 
one can chose different type of windows, as: Hamming, 
Hanning, Blackmann, rectangular, adaptive, etc.  

We chose a 12 points length Hamming window as 
this is close to the average length of an alpha helix, one 
of the common secondary structure conformations in 
proteins. We had and overlap of 11 points between 
windows. Overlap is important as it dictates the amount 
of frequency information lost due to the splitting of the 
signal into windows. 

Another useful signal processing tool similar to the 
Short-Time Fourier Transform is the wavelet transform. 
This representation is superior to the STFT because it 
uses a variable resolution to analyze the signal, 
according to the frequency content of that signal.  

Continuous wavelet transform CWT, uses a window 
depending both on time and frequency. So, CWT 
analyses the time-frequency plane with variable 
dimensions cells, based on a window defined as 
follows[12]: 

                        
( ) ( )( )tssw −⋅= τψτ                                        (3) 

 
Continuous wavelet transform is introduced by the 

following expression: 
                        

∫
+∞

∞−

−⋅= ττψτ dtsxstsCWTx ))(()(),(
        (4) 

 
where ψ(τ) is the analyzing wavelet and s is a scale 

parameter depending on the x(t) sequence length. 
By applying the CWT to the numerical analyzed 

sequence one has to look for the local energy maxim in 
the space-frequency representation of the protein signal 
as the amino acids being searched for are those that 
contribute the most frequency-wise.  

Although the linear time-frequency representations 
are very useful, in some energetic distributions 
applications are preferred quadratic representations. So, 

192



 

 

the 
( ) 2

,ωtTF STFT
x function is known as being the 

spectrogram of x(t) and the 
( ) 2

,ωtTF CWT
x  is the 

scalogram. In these two cases the number of interference 
terms is much bigger then for the linear situations. 

 
III. RESULTS 

 
Whe chosed for our paper three sequences from the 

GenBank database, corresponding to the human alpha 
hemoglobin alpha-1 globin chain (HBA1), the 
hemoglobin beta (HBB) and the myoglobin chain. To 
show how time-frequency-domain analysis of DNA 
sequences can be a powerful tool for specifically 
identifying protein coding regions in DNA sequences, 
we analysed all of these sequences and obtained the 
corresponding spectrograms and scalograms. The  
obtained time-frequency representations are presented in 
figure 1 to 6. The dark spots that are present in the 
images are high-energy areas located in the 
time0frequency plane, that correspond to important 
features of the processed genomic sequence. Our results 
reveal that neither the Short-Time Fourier Transform nor 
the Continuous Wavelet Transform is significantly 
better than the other in  localizing “hot spots” in the 
DNA sequences.  
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Samples

Fr
e
qu
en
c
y 
[H
z
]

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 
Fig. 1 STFT of human hemoglobin alpha chain 

 
Fig. 2 Scalogram of human hemoglobin alpha chain 

obtained using the Morlet wavelet 
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Fig. 3 STFT of human hemoglobin beta chain 

 

 
Fig. 4 Scalogram of human hemoglobin beta chain 

obtained using the Morlet wavelet 
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Fig. 5 STFT of human hemoglobin alpha chain 
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Fig. 6 Scalogram of human hemoglobin alpha chain 

obtained using the Morlet wavelet 
 

IV. CONCLUSIONS 
 

Our objective was to locate the amino acids (“hot 
spots”) critical to the function of these DNA chains in 
the resulting spectrogram and scalogram. Our results 
show that both the STFT and the CWT are able to locate 
a genomic signal’s “hot spots” given a signal based on 
amino acid chains. Signal processing-based 
computational and visual tools are meant to 
synergistically complement character-string-domain 
tools that have successfully been used for many years by 
computer scientists. In this article, we illustrated one of 
several possible ways that signal processing can be used 
to directly address biomolecular sequences The 
assignment of optimized, complex numerical values to 
nucleotides and amino acids provides a new 
computational framework, which may also result in new 
techniques for the solution of useful problems in 
bioinformatics, including sequence alignment, 
macromolecular structure analysis, and phylogeny. The 
use of time-frequency representations extends the 
possibilities that are offered to researchers in the field of 
genomic signal processing. 
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