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Abstract: The laws of the electromagnetic 
interactions were discovered by Maxwell. Later on 
it was prooved that these laws can be derived also 
by the principle of the least action if the Lorentz-
invariant Lagrangian is invariant also against the 
local gauge transformations belonging to the U(1) 
gauge group. 
This derivation can be considered as a model for 
the derivation of the laws  of the weak and that of 
the strong interactions using the local gauge 
transformations belonging to the SU(2) and SU(3)  
gauge groups, respectively. 
 
 
 

INTRODUCTION 
 

During the last two centuries the chemists 
discovered the atoms from the Hydrogene up to the 
Uranium and a vast multitude of molecules from 
the Hydrogen molecule up to the Desoxiribo-
nucleonicacid and beyond. During the last century 
the physicists discovered the elementary particles 
which are the smallest building blocks of the 
atomic and subatomic systems. At the moment we 
are convinced that the number of the elementary 
particles is 12. They can be devided into two 
groups, namely into the groups of leptons and 
quarks.  
  
          LEPTONS                                    QUARKS 
e electron   e neutrino                  d down       u up 
μ muon    μ neutrino                   s strange    c charm 
τ tau           τ neutrino                  b bottom     t top 
 
All the 12 elementary particles are fermions having 
spin 1/2 and they follow the Pauli-principle. 
Because of tis reason they are considered to be the 
building stones of matter, since  a well defined 

quantum state can not be occupied by more than a 
single fermion. 
 
Among normal conditions the quarks can not exist 
in free state, they exist only in bound states: 
three qarks together, in bound state (q1,q2,q3) form 
a baryon (for example  a proton, or a neutron, or a 
hyperon, etc.) 
One quark and an antiquark together, in a bound 
state (q1, q~2) form a meson, (for example a pion, 
or a kaon, or a charmonium, etc.) 
Step by step it was discovered that there are three 
fundamental interactions among the particles which 
are responsible for their beheviour, both in free and 
in bound states. 
These are the electromagnetic interaction (acting 
among particles having electric charge, or magnetic 
moment), the weak interaction (acting among all of 
the 12 elementary particles), and 
the strong interaction (acting among the quarks). 
In the nature there exists also  a fourth fundamental 
interaction, that is the gravitation. Its effect , 
however, is negligible in the realm of the 
microparticles. 
 

 
THE ELECTROMAGNETIC 

INTERACTION 
 
 
The Dirac–equation for the elementary fermions i. 
e. for leptons and for quarks having rest mass m can 
be written in the following form: 
 

( ) 0=Ψ−∂ mi j
jγ , 

( ) 0=+∂Ψ mi j
jγ , 

 
where the 4*4 Dirac matrices γj are defined by the 
anticommutators 
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( )3,2,1,0,,2 ==+ kjg jkjkkj γγγγ ,  
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The solutions of the Dirac–equation can be 
obtained in terms of plane waves: 
 

( ) ( ) ipxepux −=Ψ , 
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where 33221100 xpxpxpxpxppx j

j −−−==  
or, 

xpEtpx rr
−= . 

The amplitude u(p) is the solution of the algebraic 
equation 
 
( ) ( ) 0=− pump j

jγ   
 
which exists only if the relativistic relations among 
the mass m, the energy E and the momentum p

r
 are 

fullfilled: 
 

( )22 pmsqrtE r
++= , or 

( )22 pmsqrtE r
+−= . 

 
It can be proved that these solutions are eigenstates 
of the spin operator sz with the eigenvalues +1/2, or 
–1/2. 
It is easy to see that the Dirac–equation is invariant 
with respect of the global gauge transformation: 
 

( ) ( ) ( )xex xi Ψ=Ψ′ Θ− , 
 
where Θ is a real constant. 
Now we introduce a very important requirement, 
namely we demand that the Dirac–equation must be 
invariant against the local gauge transformation: 
 

( ) ( ) ( )xex xi Ψ=Ψ′ Θ− , 
 
where ( )xΘ  is a real number, depending on the 
local coordinates x0, x1, x2 and x3. 

The original Dirac–equation does not fullfill this 
requirement, however if we introduce an extra term 
of the form ( )xAe j

jγ e, it is easy to see that the 
“new” Dirac–equation 
 

( )[ ]( ) ( ) 0=Ψ−−∂ xmxeAi jj
jγ  

 
is transformed into 
 

( )[ ]( ) ( ) 0=Ψ′−′−∂ xmxAei jj
jγ  

 
if we perform the local gauge transformation 
defined by 
 

( ) ( ) ( )xex xi Ψ=Ψ′ Θ− , 

( ) ( ) ( )x
e

xAxA jjj Θ∂+=′ 1
. 

 
In order to obtain information about Aj(x), let us 
construct the Lagrangian of the field Aj(x), then 
apply the principle of the least action: 
 

0=sδ , 
 
where s is the action integral defined as 
 

∫= xds 4  L ( ) ( )( )xAxA kjj ∂,  
 
The Lagrangian-density L ( ) ( )( )xAxA kjj ∂  can be 
constructed from Lorentzian scalars: 
 
L jk

jk
jk

jk
j

j GzGFbFAAM ++= 2  
 
where ( ) ( ) ( )xAxAxF jkkjjk ∂−∂= , 
 

( ) ( ) ( )xAxAxG jkkjjk ∂+∂= .  
 
The local gauge invariance required for the Dirac–
equation must be required for the complete 
Lagrangian density as well. This means that the 
coefficients M2 and z must vanish: M2=0 and z=0. 
Consequently the Lagrangian density invariant 
against both the Lorentz transformation and the 
local gauge transformation have the following 
simple form: 
 

( ) ( )xFxF jk
jk4

1
− . 

 

119



Finally the complete Lagrangian can be written as 
follows: 
 
L ( )Ψ−∂Ψ= mi j

jγ  

jk
jk FF

4
1

−  

ΨΨ− j
j Aeγ . 

 
The first term describes the free fermion field Ψ(x) 
the second the free vector field Aj(x) and the last 
term corresponds to the interaction of the fermion 
field Ψ(x) and the vector field Aj(x). 
By the help of the variational calculus we can 
obtain the necessary conditions of the minimum of 
the action integral s: 
 

( )( )[ ] 0)( =Ψ−−∂ xmxeAi jj
jγ , 

( ) ( )( )[ ] 0=++∂Ψ mxeAix jj
jγ , 

( ) ( )xjxF kjk
j =∂ , where 

( ) ( ) ( )xxexj kk ΨΨ= γ . 
 
 
We have derived the field equations of the 
electrodynamics i. e. the Maxwell-equations. 
It is obvious that Aj(x) is identical with the vector 
potential, jk(x) is identical with the electric current 
density and Fjk(x) is identical with the field strength 
tensor. 
From the gauge symmetry we have got as a by 
product the condition M2=0. In the quantumelectro-
dynamics the physical meaning of M is the mass of 
the photon.  
This means that from the Lorentz- symmetry and 
from the local gauge symmetry we have obtained 
not only the field equations of the electrodynamics 
but also the most important property of the photon. 
We have got the whole optics! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 
This derivation of the laws of the electromagnetic 
interaction can serve as a model for the derivation 
of the laws of other interactions e. g. for the weak 
and for the strong interactions. 
Even if we were blind we would be able to discover 
the light by the help of the principle of the local 
gauge invariance. As a matter of fact we are blind 
in respect of the weak and the strong interactions. 
By the help of the generalizations of the local gauge 
transformation we are able to discover completely 
the theory of the weak and that of the strong 
interactions. 
In the case of the electromagnetic interaction the 
local gauge transformations form a particular 
group, namely the group of the 1 dimensional, 
unitarian matrices. Its conventional name is U(1). It 
is associated with a single real field Ak(x). 
In the case of the weak interaction the transfor-
mations form an other particular group, namely the 
group of the unitarian, 2 dimensional, special 
matrices. Its conventional name is SU(2). It is 
associated with the three real parameters W1(x), 
W2(x) and W3(x). 
In the case of the strong interaction the transfor-
mations form again a particular group, namely the 
group of the unitarian, 3 dimensional, special 
matrices. Its conventional name is SU(3). It is 
associated with eight real parameters G1(x), G2(x), 
G3(x), G4(x), G5(x), G6(x), G7(x) and G8(x). 
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