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Abstract – Directly classifying high dimensional data 
may exhibit the ``curse of dimensionality'' issue that 
would negatively influence the classification 
performance with an increase in the computational 
load, depending also on the classifier structure. When 
working with classifiers not affected by this issue (such 
as Support Vector Machines, for instance), the 
computational load still exists due to the required time 
in computing the kernel matrix. Moreover, the 
performance is affected when a few samples per class 
is available for the training procedure. One common 
solution is to carry out a feature extraction step for 
reducing the data dimension prior to classification. 
The paper describes the application of Nonnegative 
Matrix Factorization (NMF) for extracting features 
from mammogram medical images with different 
resolution, further used for recognizing breast tumors. 
For comparison, Principal Component Analysis (PCA) 
and Independent Component Analysis (ICA) were 
explored. Experiments show that NMF method 
outperforms PCA and ICA, leading to higher 
classification accuracy. 
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I. INTRODUCTION 
 

Dimensionality reduction implies either feature 
selection or feature extraction [1]. While feature 
selection refers to selecting subsets from initial data, 
feature extraction rather deals with data transformation.  

Mammographic images are usually high dimension 
images. A mammogram is basically an X - ray capture 
of the breast region that displays points with bigger 
intensities that are suspected of being tumors. Artifacts 
appearing in the mammogram could indicate a potential 
presence of a benign or malignant tumor. Important 
visual clues of breast cancer include preliminary signs of 
masses and calcification clusters. Masses and calcium 
deposits can be easily identified by visual inspection in 
X-ray images, as they are much denser (highly attenuate 
X-ray) than all other types of soft tissues around. 
Unusual smaller and clustered calcifications are 
associated with malignancy while there are other 

calcifications (diffuse, regional, segmental and linear) 
that are typically benign. Such calcifications are termed 
as microcalcifications. Automatic tumor detection is 
extremely challenging as the suspicious calcifications or 
masses appear as free shape and no precise pattern can 
be associated to them. Moreover, the presence of more 
or less prominent blood vessels and muscle fibers makes 
the issue to become harder to deal with. Several 
techniques have been proposed to analyze or to extract 
features from mammogram images. Ferreira and Borges 
[2], [3], describe a method based on wavelet 
decomposition. The images are decomposed in wavelet 
basis. Using a minimum subset of representative wavelet 
features of image textures based on a specific threshold, 
the work investigated different wavelet bases, variation 
of the selection strategy for the coefficients, and 
different metrics. Haar wavelets and PCA were 
proposed by Swiniarski et al [4] to extract relevant 
features, and rough sets methods are employed for 
classifying those features. Recently, the authors 
extended the work by extracting ICA features [5]. To 
detect microcalcifications, Lemaur et. al. [6] developed 
a method based on wavelets derived from Matzinger 
polynomial with high Sobolev regularity index, suitable 
for detecting singularities in image. A multiresolution 
statistical model has been proposed by Strickland and 
Hahn [7].  It should be mentioned that, while wavelets 
based methods are rather used to enhance the image and 
analyze it from various frequency perspectives and do 
not actually reduce data dimension, PCA or ICA 
approach does. Sheshadri and Kandaswamy [8] 
attempted to classify breast tissue using simple image 
statistics such as its intensity level of histogram. 
Statistical features extracted such as mean, standard 
deviation, smoothness, third moment, uniformity and 
entropy are employed to classify breast tissue into four 
basic categories like fatty, uncompressed fatty, dense 
and high density. The extracted features are next 
classified using various classifiers. A binary tree 
classifier based on the use of a 2-D Quincux wavelet 
transform is developed by Sun et al. [9], while Wei et al. 
[10] employed Support Vector Machines (SVMs), 
Relevance Vector Machines (RVM) and Kernel Fisher 
Discriminant (KFD). A classification model based on 
association rules was developed by Zaiane et al in [11].  

In this paper, we investigate the suitability of using 
Non-negative Matrix Factorization (NMF) method for 
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extracting discriminant features from mammogram 
image samples and, in the same time, to reduce data 
dimension. Compared to PCA or ICA, NMF features 
seem to have more discriminant power in terms of 
classification accuracy. 
 

II. NON-NEGATIVE MATRIX FACTORIZATION 
 
NMF approach [12] is a method that leads to parts-

based representation, and, unlike other decomposition 
methods (such as PCA, ICA, etc) allows only additive, 
not subtractive combinations of the original data. NMF 
is an unsupervised learning method that imposes non-
negative factorization, i.e., both decomposition factors 
have only non-negative entries. Given n non-negative 
input m - dimensional vectors ai (i = 1, … , n), each 
vector representing the pixel intensity values of the 
image lexicographically scanned and stored in the 
columns of a matrix A, NMF decomposes this matrix 
into two matrices, W of dimension m x r and P of size r 
x n so that their product approximates, to some extent, 
the original matrix A. Here, the r columns of W are 
named NMF bases images and the rows of P represents 
their encoding coefficients. The rank of the 
factorizations W and P is typically chosen such that (n + 
m) r < nm. Hence, the compression of data is achieved 
and the compression ratio of NMF is provided by nm /(n 
+ m) r. The low-dimensional representation of the m - 
dimensional original vector ai is thus given by the r - 
dimensional vector pi. Each original image can be 
reconstructed as ai  = W pi. 

The quality of reconstruction depends on the cost 
function associated to the decomposition process. Two 
cost functions are usually employed: Kullback-Leibler 
divergence
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its W pi for j = 1 …  m and k = 1 … r.  
Since its first development, NMF knew a huge 

interest from the scientific community, due to its 
simplicity and intuitive decomposition. NMF 
applications include image processing (face and facial 
expression recognition, medical imaging, etc.), audio 
data processing or text mining and decomposition [13]. 
In the medical field, NMF was applied for discovering 
metagenes and molecular patterns in a genomic signal 
processing task [14], for decomposing multichannel 
EEG signals [15], or for source spectra separation from 
magnetic resonance chemical shift imaging of human 
[16]. 
 

III. DATA DESCRIPTION 
 
The data samples used in our experiments were taken 
from the Mammographic Image Analysis Society 
(MIAS) [17]. The database contains 322 samples that 

belong to three categories: normal, benign and malign. 
There are 208 normal images, 63 benign and 51 malign 
cases, which are considered abnormal. Each image is 
centered and its size is of 1024 x 1024 pixels. The 
abnormal cases are further divided into six categories: 
microcalcification, circumscribed masses, spiculated 
masses, ill-defined masses, architectural distortion and 
asymmetry. However, we only considered the three 
classes above mentioned. For each abnormal case, the 
coordinates of center of abnormality are provided along 
with the approximate radius (in pixels) of a circle 
enclosing the abnormality. The widest identified 
abnormality corresponds to a radius of 197 pixels, while 
the tightest correspond to a radius of 3 pixels. In some 
cases calcifications are widely distributed throughout the 
image rather than concentrated at a single site. Here, the 
center locations and radii have been omitted. Knowing 
the location and the approximate size of abnormality 
allows us to extract subimages (patches) with proper 
dimension representing the tumor zone. 
 

III. EXPERIMENTAL SETTING AND RESULTS 
 
To discard irrelevant information like the breast contour, 
patches of 140 x 140 pixels surrounding the abnormality 
region were extracted from the original 1024 x 1024 
pixels images. The patches size assures that, for most 
abnormal cases not only the abnormality region is 
captured but also the surrounding area, providing us 
information about the abnormality shape. 
 

 
 

Fig.1 Patches of 140 x 140 pixels extracted from 
mammographic images. Top row represents 5 samples 

for the normal case, middle row represents 5 samples for 
the benign case, while the bottom row illustrates 5 

samples for the malign case. 
 
For the normal case, the patches were extracted from the 
middle of the breast images. Fig. 1 illustrates 5 samples 
per case. Finding the final NMF decomposition factors 
is a time consuming iterative process. Therefore, to 
reduce the computational load we downsized the patches 
to 60 x 60, 40 x 40 and 20 x 20 pixels, respectively, 
prior to NMF. We further split the mammographic data 
into training and disjoint test set. We picked up 80 \% 
samples to form the training set and the remaining 
samples are included in the test set. Each image patch 
was reshaped into m  = 3600 dimensional vector (for the 
patches of 60 x 60 size) and stored in the columns of 
matrix A. 
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TABLE I. MAXIMUM CLASSIFICATION RATE EXPRESSED 
IN PERCENTAGE (%) FOR ALL FOUR METHODS 
INVESTIGATED IN THE PAPER AND CSM  CLASSIFIER. 
 

 
 
TABLE II. MAXIMUM CLASSIFICATION RATE EXPRESSED 
IN PERCENTAGE (%) FOR ALL FOUR METHODS 
INVESTIGATED IN THE PAPER AND PSVM CLASSIFIER. 
 

PSVM Patch 
size NMF PCA ICA I ICA II 

60 x 60 70.8 67.1 68.7 68.7 
60 x 60 68.7 67.1 67.1 65.6 
60 x 60 68.7 65.6 64 59.3 
   
The dimensionality reduction algorithms (NMF, PCA 
and ICA) were applied for several decomposition ranks, 
more precisely, r  = {5, 10, 20, 30, … , 100}. Ten NMF 
bases images are depicted in the top row of Fig 2. 
Assuming zero mean input (training or test) data, the 
NMF training feature vectors are comprised in the 
columns of Ftr(NMF) = W-1Atr  where Atr is the zero mean 
training set. 
 

 
 

Fig.2 A number of 10 basis images out of 100, 
corresponding to NMF on the top row, PCA on the 

second row, and ICA architecture I and II, respectively, 
on the last two bottom rows. 

 
Whenever a new zero mean unseen patch atest comes, its 
corresponding feature vector is formed in a similar way, 
i.e., ftest(NMF) = W-1atest . PCA feature vectors are formed 
by projecting the data into the PCA eigenvectors (PCA 
basis images illustrated in the second row of Fig. 2 i.e., 
Ftr(PCA) = VT

r Atr  where VT is the r - rank PCA 
projection matrix. For the ICA method two architectures 
exist, depending on the image storing type in A [18]. 
When images are stored in the rows of A, we have the 
first ICA architecture, denoted here as “ICA I”, while 
the second architecture, “ICA II”, considers the images 
in the columns of A. After ICA training, the 
corresponding basis images are retrieved, as depicted in 

the last two rows of Fig. 2 for the two architectures. ICA 
feature vectors are comprised in the rows of Ftr(ICA) = A T 
Vr B-1 , where B is the unmixing matrix found by ICA 
algorithm. Next, two classifier types are employed: a 
simple Euclidean distance measure based classifier, 
named Maximum Correlation Classifier (MCC) and 
Proximal Support Vector Machines (PSVM) [19] with 
polynomial kernel of degree 1,2 and 3. As PSVM is 
typically designed for two-class problem, a  
”one against all” strategy was applied for our three-class 
case. 
 

 
 

Fig.3 Classification accuracy attained with MCC for 
image patches of 60 x 60 pixels and different numbers 

of dimensions (ranks). 
 

 
 

Fig.4 Classification accuracy attained with PSVM for 
image patches of 60 x 60 pixels and different numbers 

of dimensions (ranks). 
 
Fig. 3 and 4 shows the variation of the classification 
accuracy corresponding to MCC and PSVM, 
respectively, for different low dimensions. As can be 
noticed for the MCC classifier, while all feature 
extraction methods lead to approximately the same 
classification accuracy up to rank r = 30, the PCA and 
ICA classification performance gets lower with an 

MCC Patch 
size NMF PCA ICA I ICA II 

60 x 60 67.1 57.8 57.8 59.3 
60 x 60 65.6 57.8 57.8 60.9 
60 x 60 65.6 57.8 57.8 59.3 
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increase in the dimension rank. On the other side, an 
increase in the NMF rank conducts to higher 
classification accuracy. As expected, using more 
complex classifiers such as PSVMs leads to better 
classification results than the ones corresponding to 
MCC, for all feature extraction methods, but it requires 
more dimensions. Table I and II tabulate the maximum 
classification accuracy in percentage for different patch 
sizes, obtained by each feature extraction method 
coupled with MCC and PSVM, respectively. When 
MCC is employed, PCA and ICA conducted to the same 
accuracy value regardless of the patch size. NMF clearly 
outperforms both PCA and ICA in terms of 
classification accuracy with a maximum of 67.1 % 
compared to 57.8 % corresponding to PCA or ICA. 
NMF seems to be more sensitive to the dimension patch 
with a performance decrease from 67.1 % to 65.6 % 
associated to downsampling from 60 x 60 to 40 x 40 
pixels. Overall, the best performance is obtained with 
linear PSVMs, where the classification accuracy gets 
higher. NMF features associated to PSVMs again 
yielded the highest accuracy. 
 
 

III. CONCLUSIONS 
 
Dimensionality reduction for high dimension data is a 
necessary step for any pattern classification system. 
Particularly, this paper dealt with reducing the 
dimension of mammographic images through applying 
the NMF feature extraction technique. The extracted 
features were further classified into three classes: 
normal, benign and malign. For comparison purpose, 
PCA and ICA features were also extracted as baseline in 
classifying the features. The preliminary experimental 
results indicate that NMF is able of retrieving more 
discriminant features than PCA or ICA, leading to better 
classification performance. 
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