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Abstract: The aim of this paper is to study the induction 
heating processes by using optimal design with Genetic 
Algoritms (GAs) respectively fmincon and minimax 
optimisation methods. The optimisation is performed in 
order to obtain a high value of electrical efficiency of the 
inductor, as well a minimum non-uniformity of the 
temperature distribution in the workpiece. The optimisation 
is performed in two different ways: by using a simple 
genetic algorithm and with fmincon and minimax 
functions. 
 
Keywords: induction heaters, numerical modelling, 
optimisation, simple genetic algorithm. 
 

 
I. INTRODUCTION 

 
The aim of this paper is to investigate the ways the 
evolutionary optimisation technics can be applied in the 
design of electromagnetic devices, in particular of the 
induction heaters in order to automate some parts of the 
designing process and to compare the obtained results with 
other optimisation methods, namely fmincon and minimax. 
For the electromagnetic problems, the optimal design is 
usually a multiobjective task where different specifications, 
often in conflict among them, have to be pursued with 
several design degrees of freedom, which are the design 
parameters. Also, the device parameters have to satisfy 
some technological and physical constraints. Therefore it is 
necessary to use a multiobjective optimisation strategy. 

Due to the presence of multiple quasi-optimal solutions and 
to the typical complexity of electromagnetic computations, 
the automatic optimal design of electromagnetic devices is 
a very complex task.  
The design process of the induction heating devices, takes 
into account the inductor’s electrical efficiency,[1]. By this 
point of view, induction coils with a small coupling gap are 
more efficient than loosely coupled ones, so that the 
magnetic flux would flow through the workpiece surface, 
generating eddy currents. Higher frequency is also 
beneficial, [2],[4],[5]. Carrying out the design must 
consider the heating of the entire internal length of a 

workpiece, such as the temperature distribution would be 
as uniform as possible. 
In this work considerations regarding simple genetic 
algorithm and fmincon and minimax functions optimization 
are presented, having the aim to increase the electrical 
efficiency, as well as to assure a uniform temperature 
distribution along the workpiece. These are important steps 
in the optimal design of the induction heating processes. 
For optimisation, three methods where applied: simple 
genetic algorithm, in which the two objectives are 
combined in a single fitness function by using weghting 
coefficients, optimisation with fmincon function and 
optimisation  with minimax function. 
 

 
II. MODELLING THE INDUCTION HEATING DEVICE 
 
The induction heater for cylindrical pieces was selected for 
this experiment (Figure 1).  

 
Figure 1. Inductor heater and a cylindrical piece, where:  

1- piece; 2- magnetic coil; 3 – water; 4- turn 
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The heater is double sided, heating in longitudinal field 
without magnetic core. The phisical model of the heater is 
presented in Figure 1, [3].  
The mathematical models of the electromagnetic and 
thermal fields, based on the specific laws of these 
phenomena are described by partial equations. 
The mathematical model of the cuasi-static harmonic field 
is represented by the equation (1): 

 
( ) ( ) ( )( ) JArot/1rotAj 0r0 μ=μ+σωμ                (1) 

 

The  mathematical  model  of  the  transient   thermal   field  
θ(r, z, t) is described by equation (2):  

 
( ) ( ) ( )( ) QHTgrad*kdivdt/Td*c =−+ρ       (2) 

where ρc is the specific heat. 
 
III. OPTIMISATION METHODS 
 
In practice, the optimal design problem is usually 
formulated in terms of constrained optimization of a multi-
objective scalar function, typically constructed as a 
weighted sum of different objective functions, which 
usually are competitive. 
The obtained scalar function is then minimized or 
maximized inside a suitable search domain, taking into 
account the imposed constraints. Among the deterministic 
optimization methods that could be applied, it is to be 
mentioned the simplex algorithm and the golden selection 
method. But generally, the obtained scalar function has 
multiple local optima scattered in the admissible solutions 
space. Therefore optimization calls for global techniques 
able to explore the search space. 
Evolutionary strategies are a family of algorithms widely 
used in global optimization problems and particularly; 
Genetic Algorithms (GAs) have a particular relevance, for 
their simple implementation and for their efficiency.  
 
III.1. Genetic algorithms 
 
Genetic algorithms (GAs) are global random search 
methods widely employed in optimization problems, or in 
problems where the gradient of a given objective function 
is not available. They compensate the lack of gradient 
information through a random exploration of the search 
space that evolves in analogy to the evolution in nature, [6]. 
The power of GAs consists in only needing objective 
function evaluations to carry out their search.  
GAs consist in having a population of candidate solutions 
(individuals, chromosomes) to an optimization problem 
that evolves at each iteration t of the algorithm, called 
generation. The evolution of the species is simulated 
through a Fitness function and some genetic operators such 
as selection, crossover, and mutation.  
Fitness function is a scalar value that combines the 
optimization objectives and is obtained in the evaluation 
step, when a problem specific routine returns its value. The 

fittest individuals will survive generation after generation 
while also reproducing. At the same time the weakest 
individuals disappear from each generation. 
Individuals must be encoded in some alphabet, like binary 
strings, real numbers, and vectors. 
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Figure 2. Creating the next generation in GAs 
 

In a practical application of GAs, a population pool P(t) of 
chromosomes has to be installed and they can be randomly 
set initially. In each cycle of genetic evolution, a 
subsequent generation is created from the chromosomes in 
the current population, shown in figure 2, [8]. 
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In the evaluation step, the Fitness value for each individual 
in the population is computed.  
During the selection stage, a temporary population denoted 
“Mating pool” is created in which the fittest individuals 
have a higher number of instances than those less fit. 
During the evolution, GAs employ genetic operators like 
crossover and mutation, [9]. 
The crossover is applied with the probability PI. It 
randomly mates the individuals and creates offsprings D1 
and D2 from two parents I1 and I2 by combining the 
parental genes and transferring them to the next generation.  
The mutation operator is applied with a low probability Pm. 
It creates new individuals D3, which are inserted into the 
population, by randomly changing the parent I3.  
The algorithm establishes the next generation P(t+1) and by 
this way, individuals of the original population are 
substituted by the new created individuals. 
In essence, the procedure of a GA is given as follows: 
1. Generate randomly a population of chromosomes. 
2. Calculate the fitness for each chromosome in the 

population. 
3. Create offspring’s by using genetic operators. 
4. Stop if the search goal is achieved. Otherwise continue 

with Step 2. 
GAs can take into account the constraints by using 
different methods. The most used approach is to reject the 
infeasible individuals. Another approach is to use penalty 
functions. In this case, violation of constraints takes the 
form of penalties. The basic idea of this approach is to 
“punish” the fitness value of an individual whenever the 
solution produced violates some of the constraints imposed 
by the problem. In this paper, the first approach is used. 
 
III.2. Fmincon optimisation 
 
By using the Fmincon function from the Matlab 
Optimization Toolboxe [10], a function with several 
variables is to be minimized, by taking into account the 
constraints of the problem, as stated in relation (3). 
 

 ⎭
⎬
⎫

⎩
⎨
⎧

≤≤=⋅≤⋅

=≤

u   x  lbeq, x Aeqb,  x A 
 0  ceq(x)0,c(x))f(x

min
    (3) 

 
The Fmincon algorithm. 
For large scale optimization problems, the algorithm uses 
the confidence region procedure. Each iteration of the 
algorithm implies approximating the solutions of a large 
linear equations system by using the conjugate gradient 
method with preconditioning. fmincon uses a user-defined 
Hessian, or Hessian information for the objective function. 
It approximates the Hessian using finite differences 
For medium scale optimization problems, fmincon uses a 
Sequential Quadratic Programming method. In this method, 
a Quadratic Programming subproblem is solved at each 
iteration. An estimate of the Hessian of the Lagrangian is 
updated at each iteration and a line search is performed 
using a merit function. The Quadratic Programming 
subproblem is solved using an active set strategy 

Limitings. 
- The objective function that is to be minimised and 

the constraints must be continuous functions. 
- The obtained result is a local minima. 
- The objective function and the constraints 

functions must return real values. 
. 
 
III.3. Fminimax Optimization 
 
The fminimax algorithm uses a Sequential Quadratic 
Programming method. Modifications are made to the line 
search and Hessian. In the line search an exact merit 
function is used together with the merit function, [10]. 
The line search is terminated when either merit function 
shows improvement. A modified Hessian that takes 
advantage of special structure of this problem is also used. 
Using optimset to set the MeritFunction parameter to 
singleobj uses the merit function and Hessian used in 
fmincon. 
Limitations 

- The function to be minimized must be continuous. 
- The constraints must be continuous functions. 
- The objective function and the constraints functions 
must return real values. 

 
 
IV. OPTIMIZATION OF THE INDUCTION HEATERS 

 
IV.1. Optimization of the induction heaters by means of 
simple GAs 
 
A simple GA implemented in Matlab is used. It has the 
following main features: 

- Individuals can be encoded like binary strings, real 
numbers, and vectors of binary strings or of real 
numbers, or like permutation strings; 

- The genetic operators are implemented according 
with the encoding scheme used; 

- Randomly generates the initial population, but 
allows the use of an initial population specified by 
the user; 

- Performs the GA’s specific iteration; 
- Includes the best performing individual of the 

parent generation in the new generation in order to 
prevent a good individual being lost by the 
probabilistic nature of reproduction; 

- Allows the user to establish the GA’s parameters: 
the size of the population, the type of selection 
scheme, crossover and mutation and the 
probability of applying the genetic operators. 

 
The design variables of the problem are: the frequency f, 
the Li and h. 
In order to apply genetic algorithms, it is necessary to use a 
coding scheme to the solutions of the problem. In this case, 
we used vectors of real numbers, having the form of 
relation (4) and presented in Figure 3. 
[ f  Li h]                       (4) 
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Figure 3 Individual encoding scheme 

 
GAs implicitly perform maximisation of the Fitness 
function, which is a scalar value. While in this optimization 
problem two objectives are stated, maximization of the 
efficiency and minimization of the temperature ecart, the 
scalar Fitness value is obtained by using the weighting 
coefficients method. [7]. 
 

Fitness=w1Ob1+w2Ob2 
or 

Fitness=w1Ob1+(1-w1)Ob2  

 
Where Ob1 and Ob2 are both to be maximized, we will 
have a single w1. 
Since the efficiency takes values in the interval 0.1...0.9 
[%], and ecart in 80....1000 [°C], the weighting coefficients 
are to be established in such a manner that both objectives 
contribute in equally sized quantities to the Fitness 
function. 
Firstly the objectives were adimensionalised in order to 
remove the influence of the variation domain of the two 
objectives as in the following relation: 
 

)randrand(
)randrand(

)w1(
)ecartecart(

)ecartecart(
wF

minmax

max
1

minmax

min
1obj −

−
⋅−+

−
−

⋅=
 

 
In the above relation, the value of ecart is to be minimized 
while the value of rand is to be maximized. By using the 
negative sign in the second term of the relation, Fobj is to be 
minimized. 
Since GAs  perform implicilty a maximization of the 
Fitness value, the minimizing optimization problem must 
be  transformed into a maximizing one, for exaple by 
inverting the objective function expression, as in the 
folowing relation: 
 

objF
1Fitness =   

 
In order to establish the Pareto set that is the solution to the 
multiobjective optimization problem, the optimization run 
was repeteadly applied for different values of the weighting 
colefficient w1=0...1. 

The first step to start the optimization is to define the initial 
population. This is carried out, by generating individuals 
having the form of relation (4) and the randomly picked 
parameters as defined by relation (5). 
 

frequency:          f ∈ [ 250   3000] Hz 
inductor length:  Li/2 ∈ [ 0.10    0.145] m     (5) 
the air-gap:         h ∈  [ 0.001   0.015] m 

 
   Once the parent population is available, recombination 
allows for the creation of new individuals, based on the 
previous generation. In this work, we have chosen to use 
arithmetic crossover. This technique consists in taking two 
individuals from the parent population and using a random 
factor from the interval [0,1], so that the new offspring's 
parameter might be at any point between its parents' 
parameter values. This process of recombination is 
mathematically expressed in relation (6). 
 
Di = α ⋅ Ii + (1 - α) ⋅ Ij  
Dj = (1- α)⋅Ii+ α ⋅ Ij           (6) 
 
where Ii and Ij are the parents, α is a random factor and Di 
and Dj are the produced offsprings. The used crossover 
probability is 0.8. 
Through the recombination operator a new population is 
created. All the parameter values have been calculated 
based on inherited values from the parent population. 
Therefore no new information has been inserted in the 
population but only old information has been recombined.  
In order to introduce new information into the population 
pool, the mutation operator is used. 
Mutation consists of slightly perturb ting the parameters of 
the offspring individuals. Uniform mutation was used, that 
randomly takes a parameter k of an individual and replaces 
it with a new value using a random factor from the interval 
[0.1]. This is expressed in mathematical term by relation 
(7). 
 
Dik = Lmin +  α ⋅ |Lk |          (7) 
 
where Dik is the k’th parameter of the produced offspring, 
α is a random factor and |Lk | is the allowed domain for the 
given parameter. The used mutation probability is 0.1. 
After applying the mutation operator, a mechanism that 
allows us to select which offsprings will conform the new 
population has to be implemented. The selection operator 
used is roulette wheel, the traditional selection function. 
The probability of surviving is equal to the fitness of a 
given individual, divided by the sum of the fitness of all 
individuals. In the implementation of the algorithm, simple 
elitism was also applied. This technique guarantees 
survival of the best individual. 
The approached problem deals with two opposing 
objectives, one of them being the electrical efficiency 
denoted rand, and the other one, the uniform distribution of 
the temperature inside de heated piece, denoted ecart. The 
first one is to be maximized and the second one is to be 
minimized. Accordingly, the first objective becomes rand 
and the second objective is modified so that the obtained 
quantity is also to be maximized (8): 
 

ecart1

1
2obj

rand1obj

+
=

=

         (8) 
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These objectives are normalized and adimensionalized in 
O1 and O2, so that finally we have to maximize these 
functions. The classical way of tackling such an 
optimization problem was used, which consists in 
converting multiple objectives into one objective, by the 
weighted sum approach, as given in (9). 
 

2O)1(1OFitness ⋅α−+⋅α=            (9) 
 
 Since multiple objectives are converted into one objective, 
the resulting solution to the single objective optimization 
problem is usually subjective to the parameter settings 
chosen by the user. Moreover, only one solution can be 
found in one run. 
Simple GAs were applied, with a population of 25 
individuals and the genetic serch was run for 15 
generations. Each run was performed repeadly with w1=0; 
0.1; ... 0.9; 1. 
The results were stored in the Table 1 in the following 
form: 
Col. 1,  number of generation the solution was found 
Col. 2,    frequency f; 
Col. 3, inductor lenght Li; 
Col. 4, air gap h ;   
Col. 5, Fitness. 
Usually, the best individual is the last returned by GAs. 

    Table 1. Solutions obtained with simple genetic 
algorithm 
 

w1 f [Hz] Li [m] h [m] ecart [°C] rand 
[%] 

0.0 1102.0975 0.1450 0.0010 204.8767 69.11 
0.1 913.0529 0.1442 0.0010 164.6998 69.89 
0.2 907.1050 0.1442 0.0010 163.0130 69.86 
0.3 828.6229 0.1277 0.0012 132.6263 69.42 
0.4 927.8151 0.1313 0.0010 129.2788 69.16 
0.5 632.0527 0.1449 0.0010 116.9644 68.41 
0.6 819.3478 0.1343 0.0034 114.4589 67.77 
0.7 910.2839 0.1290 0.0021 116.3087 68.75 
0.8 985.8491 0.1292 0.0055 112.0084 67.26 
0.9 1420.4631 0.1224 0.0102 103.0639 63.79 
1.0 2995.9575 0.1138 0.0115 93.1985 52.00 

 
IV.2.Optimization of the induction heaters by means 
of fminimax and fmincon functions 
 
This optimisation task is performed by using the fmincon 
and fminmax  functions from the Matlab optimisation 
toolbox. 
Theses functions are applied in two different ways. First, 
the starting point is randomly generated in the feasible 
search region. Secondly, we use as starting point a  solution 
that was previously found by GAs and the other 
opimisation methods are applied in order to refine the 
search space. 
The search domain of variables are given by relation (10).  
The design variables are f, Li and h. 

The two objective used in the design process are: ecart and 
rand. 

- frequency            f∈[250 3000]; 
- inductor length    Li∈[0.10...0.145];               (10) 
- the air-gap           h∈[0.001...0.015]; 

 
IV.2.a) Applying fminmax from randomly choosed starting 
point. 
The starting point was randomly generated in the feasible 
search space. It was the following vector: 
 [1500  0.12  0.0012]. 
The runing time of the algorithm is about 2 hours. 
Table 2 presents the solutions obtained by applying the 
minimax function. 

Table 2. Solutions obtained with fminimax function started 
from a random point: 

f [Hz] Li  [m] h [m] ecart [°C] rand [%] 
3000 0.0100 0.0010 266.1226 54.99 

 
IV.2.b) The starting point is a solution obtained by GAs in 
a previously run. 
The starting point is given by the following vector: 
 [632  0.1499  0.0010] 
Table 3 presents the solutions obtained by applying the 
minimax function. 
Table 3. Solutions obtained with fminimax function started 
from a solution found by GAs in a previously run. 

f [Hz] Li  [m] h [m] ecart [°C] rand [%] 
250 0.145 0.010 110.8395 53.28 

 
IV.2.c). The same optimisation problem as used in the 
previous paragraphs is to be solved, this time by using the 
fmincon function. Since this function from the Matlab 
Optimisation toolbox is a single objective optimisation 
method, in order to apply this method to the design 
problem, the weighting coefficients method was applied. 
The two objectives were combined into one single 
objective by using a weighting coefficient w1. 
In order to obtain the Pareto set representing the solution to 
this problem, the optimisation task is repeatedly aplied with 
different values for the weighting coefficient w1. 
The obtained results are presented in Table 4. 

Table 4. Solutions obtained with fmincon functions: 
 
w1 f[Hz] Li [m] h [m] ecart [°C] rand 

[%] 
0.0 3000 0.1 0.001 173.7602 54.91 
0.1 601.56 0.10967 0.001937 336.1191 61.91 
0.2 601.56 0.10966 0.0010938 193.4602 68.10 
0.3 625.02 0.11 0.0011 231.1738 67.65 
0.4 711.2 0.112 0.0011256 259.6993 66.74 
0.5 613.28 0.10976 0.0010969 232.9850 67.61 
0.6 2831.1 0.1241 0.0019 293.0236 65.98 
0.7 601.56 0.10963 0.0010937 233.7253 67.54 
0.8 2754 0.1254 0.001711 293.0217 66.01 
0.9 823.99 0.11406 0.0011406 233.4940 67.53 
1.0 625 0.1100 0.0011 247.0095 62.59 
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V. CONCLUSIONS 

 
Analysing the obtained results, it can be seen that applying 
optimisation by means of GAs lead to better solutions, 
comparing with fmincon and fminmax started from a 
randomly choosen point. Anyway, the best solutions are 
those given by fminmax started from a solution of GAs 
since a refinement of the search space is performed. 
Additionally, applying optimisation methods in the design 
of the electromagnetic devices lead to better designs that 
behave with higher efficiency and a more uniformly 
distributed temperature. 
The disadvantage that belong to all applied methods 
consists in the fact that electromagnetic design problems 
are very demanding in terms of computing resources, by 
requiring the resolution of a complex electromagnetic 
problem for each evaluation. When the complexity of the 
adopted model increases, the development time of a new 
device configuration is high. But, in recent years, the 
increasing computation power of personal computers 
makes this disadvantage lesser, so that it is possible to use 
stochastic algorithms effectively in many applications, such 
as in electromagnetic design problems. The development of 
methods and programs for numerical simulation are very 
importan tasks, since these make possible the simulation of 
inductor behavior before the construction, and so we can 
avoid the design errors. 
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