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Abstract – This paper deals with the computation based 
on an analytical model of the induced currents, the 
density of the active power in the sheet to be heated, 
the transversal profile of this density integrated along 
the sheet and the efficiency of an induction heating 
system for thin sheets of transversal flux type. The 
analytical model uses a database that contains set of 
results of 3D numerical modeling performed with 
Flux3D. The analytical model is a useful tool for fast 
computation and can be easily coupled with an 
optimization procedure in order to obtain a minimum 
non-uniformity of the transversal profile of induced 
power in the sheet.  
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I. INTRODUCTION 
 

The main steps for the analytical computation of the 
transverse flux inductor as follows:  
- evaluation of longitudinal and transversal variation 

of electromagnetic field source; 
- computation of the two components J2x(x,y) and 

J2y(x,y) of the induced current density on the 
metallic sheet by Fourier series with respect the 
coordinate x and by finite differences with respect 
the transversal coordinate y ; 

- evaluation of volume power density induced in the 
metallic sheet (constant on thickness) ; 

- evaluation of transversal profile Profil(y) of the 
induced power density integrated along the 
inductor; 

- computation of the deviation of  transversal profile; 
- evaluation of the power losses in the inductor coils, 

cooper screens, magnetic cores lateral clamping 
plates included and the computation of inductor 
electrical efficiency 

 
II. LONGITUDINAL AND TRANSVERSAL 

VARIATION OF THE ELECTROMAGNETIC 
FIELD SOURCE 

 
The source of electromagnetic field is an equivalent 

current density of amplitude J1m . This density is the 
result of the assumption that the real source, which is the 

total current in the coils, is uniformly distributed in air-
gap. The longitudinal variation of this current density 
along the air-gap, Fig. 1, expressed by harmonic 
functions, Fig. 2, has for x ≥ 0 the following form: 

 
 

Fig. 1. Inductor longitudinal section  
 
 

  
 

Fig. 2. Longitudinal variation of the electromagnetic field source 
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The current density amplitude J1m of the equivalent 
source as a function of total current (NI1) in a coil is 
given by the relation: 
 

1
1m

e

2(NI )J
b ( / 2)

=
Δ

                                                           (2) 
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Expressed by Fourier series the transversal model (1) is: 
 

1 1k
k 1,2,3

2k xJ (x) J cos
T

∑
=

π
=   ,                                       (3) 

 
The amplitude of the harmonics k J1k  has the 
expression: 
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A number of terms in Fourier series greater than 10 
ensures a very good source representation.  
     Evaluation of longitudinal variation of 
electromagnetic field source, respectively the 
computation of the quantities x4, x5, x6 and kj in (1) is 
performed by the interpolation of the results of Flux3D 
gathered in a data file [1].   
     In order to take into account the variation of 
magnetic field along a direction normal to the sheet in 
the real inductor the quantity J1m is multiplied by a 
correction factor kz.  

Fig. 3 presents half of the cross section y > 0 through 
the studied transversal flux inductor with one pair of fix 
magnetic cores and two pairs of mobiles magnetic cores. 
The metallic sheet of thickness A and width B2 is placed 
in the inductor symmetry plane z = 0.  

 

 
 

Fig. 3. Cross section through the transversal flux inductor 
 

 
     For every set of input data (YC1, YC2, YEC) which 
express the position of mobile cores and screen the 
function that express the relative transversal variation of 
source VAR_TRANSV_SOURCE(y) is achieved by the 

interpolation of the results of Flux3D gathered in a data 
base [1]. 

 
III. COMPUTATION OF INDUCED CURENTS 

DENSITY AND OF INDUCED POWER DENSITY  
 

The analytical computation of induced currents 
density is based on the following assumptions:  
• an inductor equivalent with the real one, having 

ideal magnetic cores, Fig. 4, with infinite width and 
length;  

 

 
Fig. 4.  The equivalent transversal flux inductor 

 
 
• the real source of electromagnetic field is replaced 

by an equivalent current density J1[0, J1(x,y), 0], 
with orientation along the coordinate y, Fig. 4, in 
whole air-gap of thickness Δ..  The amplitude of the 
equivalent current density is given by equation (2).  

• the real metallic sheet of width B2, thickness A and  
electrical conductivity  σ = 1/RO is replaced by an 
equivalent one of the same width, nonmagnetic, 
thickness Δ  and conductivity σe . The equivalent 
quantity σe satisfies the equality σe⋅Δ = σ⋅A  

As a consequence of the above assumptions the 
electromagnetic field within the air-gap of equivalent 
inductor does not vary along Oz axis, Fig. 4 and the 
induced currents density J2 has two components, along   
axes Ox et Oy, J2[J2x(x,y), J2y(x,y), 0].  

The complex form of Maxwell equations in the 
region sheet equivalent is:  

 
 

BjωErot −=  

21 JJHrot +=  
EσJ e=2                                                                   (6) 

HμB 0=  
 

     The unknown component J2y(x, y) of induced currents 
satisfies the following equation: 
 

2 2
0 e 12y 2y2 2 J (x, y) j J (x, y) J (x, y)

x y

⎛ ⎞∂ ∂ ⎡ ⎤⎜ ⎟+ = ωμ σ +⎣ ⎦⎜ ⎟∂ ∂⎝ ⎠
   (7) 

 
     The evaluation of J2y takes into account the following 
boundary conditions: 
 

J2y(x, b) = 0  and   dJ2y(x, y)/dy⏐y = 0 = 0                      (8) 
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According to the equation  (3) J1(x,y) is expressed by the 
formula: 
 

( )1 1k k
k

J x, y J (y)cos x∑= α  ,αk = 2kπ/T                        (9) 

Equation (7) imposes that the component J2y(x,y) of 
induced currents density  has the same variation as the 
source density in relation with variable x : 
 

( ) k2y 2yk
k

J x, y J (y)cos x∑= α                                      (10) 

The condition of zero divergence of induced current 
densities in region sheet imposes the following form of 
the component J2x(x,y) of the current density: 
 

( ) k2x 2xk
k

J x, y J (y)sin x∑= α                                      (11) 

The amplitude J2xk(y) in (11) satisfies the equation: 
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                                     (12) 

The amplitudes J2yk(y) in eq. (10) and  (12) are the 
solutions of differential equations: 
 

2
2yk 2 2

1k1k 2yk 1k2

d J (y)
J (y) J (y)

dy
− λ = λ                     (13) 

where 22
0 e k1k jλ = ωμ σ + α  and the boundaries 

conditions: 

( )J B2 / 2 02yk =    and       
dJ2yk 0

dy y 0
=

=     (14) 
 

The equivalent current source density has the 
expression:  
 

 1 1k
k 1,2,3,...

2k xJ (x, y) J (y)cos ,
T

∑
=

π
= with  T = 3τ  ,    (15) 

 

where  J1k(y) = J1k(k)⋅ VAR_TRANS_SOURCE (y) and 
J1k(k) has the expression  (4). 

A numerical finite difference solution is applied to 
the mathematical model represented by equations (13), 
(14) and (12).     

Following the evaluation of the components J2x(x,y) 
and J2y(x,y) of induced currents density in the domain    
x ∈ [-T/2, T/2], y ∈ [0, B2/2], the induced volume 
power density in sheet equivalent is computed by the 
relation: 

222
J2 2x 2y

e e

1 1p (x, y) J [ J (x, y) J (x, y) ]
2

= = +
σ σ

      (16) 

 
The surface density of induced power in real sheet is 
evaluated through the equation:  
 

J2s J2p (x, y) p (x, y)= Δ                                                  (17) 
 

The transversal profile of the induced power density 
integrated along the sheet is expressed by the formula: 

 

J2i J2i
J2i

p (y) p (0)Profil(y) [%] 100
p (0)

−
=                              (18) 

where: 
 

T / 2
J2i J2

0
p (y) p (x, y)dx∫= ,

T / 2
J2i J2

0
p (0) p (x,0)dx∫=     (19) 

 

     The induced power in sheet, P2, is the result of 
computing the following integral: 
 

T / 2 B2 / 2
2 J2

e 0 0

4P p (x, y)dxdy∫ ∫
Δ

=
σ

                                   (20) 

IV. NUMERICAL APPLICATIONS OF 
ANALYTICAL MODEL 

 
The dedicated tool developed on the base of 

analytical model yields the following graphical and 
numerical results:   

(a) the transversal variation of electromagnetic 
field source; 

(b) the 3D image of the longitudinal and 
transversal variation of electromagnetic field 
source ; 

(c) the 3D image of the induced surface power 
density  pJ2s(x,y) ;             

(d) the chart of the power density pJ2s(x,y); 
(e) the transversal  profile of induced power 

density, Profil(y) ; 
(f) the deviation of transversal profil, 

Ecart_Profil. 
(g) the induced power  P2 in the sheet  ; 
(h) the power losses in coils, in screens, in lateral 

clamping plates and the magnetic core losses ; 
(i) the inductor electrical efficiency. 
Results are presented below.  
A graphical user interface was created.  
 

 
 

Fig. 5. Window for data input 
 

 The input data of an analytical computation are:   
B2, A, RO, f, NI1, YC1, YC2, YEC.  
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Fig. 6. Numerical results window 
 

 
 
Fig. 7 - Transversal  profile of induced power density, rel. (18)  

 
 

 
 

Fig. 8 - Induced surface power density, rel. (17)  

 
 

Fig. 9 Chart of the induced surface power density 
 
 
 

V. CONCLUSIONS 
 

The analytical model presented in this paper, based 
on input data issued from finite element 3D analysis, 
was implemented in an efficient tool for very fast 
computation and optimization of transversal flux 
inductors with flexible electromagnetic configuration, 
including mobile magnetic cores and eddy current 
screens. 
   Preliminary optimal positions of the mobile 
components of the inductor with respect the minimum 
transversal non-uniformity of the temperature can be 
easily defined, before refining the investigation for the 
best design solution with finite element analysis. 
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