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Abstract—Ferromagnetic shield is an efficient 

solution for shielding the static and periodic 

electromagnetic field. Therefore, it is also a shilding 

solution for an electromagnetic field having a rich 

contain of harmonics. Using the polarization fixed 

point method, the nonlinear media is replaced by a 

linear one having the vacuum permeability and a 

magnetization that is iteratively corrected by the flux 

density. For each harmonic of the magnetization, the 

electromagnetic field may be obtained by solving the 

sinusoidal steady-state eddy-current equation in the 

shield. The solution process can be started by 

retaining a small number of harmonics and, finaly, 

the acuracy of the solution may be improved with 

adding some more. The proposed method always 

yields to stable results, even when the characteristic 

B-H is strongly nonlinear, and has a superior 

computational efficiency with respect to various 

time-stepping techniques and to the “harmonic 

balance method”. 
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I. INTRODUCTION 

 

The analysis of a time-periodic electromagnetic field 

in nonlinear magnetic media can simply be done by 

linearizing the B-H relationship and by correcting 

iteratively the material permeability [1], but the 

convergence of the computational process is not always 

guaranteed.  A straightforward stepping-on-in-time 

transient analysis follows the actual nonlinear 

relationship B - H , but the necessary computation time 

to reach the periodic steady state may be prohibitive 

long. The “harmonic balance method” [2] employs a 

Fourier series expansion of the unknown quantities and 

yields to large systems of nonlinear algebraic equations 

whose solution require a huge computational effort. An 

efficient method to obtain the solution of nonlinear time-

periodic electromagnetic field problems is presented in 

[3], where the magnetic nonlinearity is iteratively treated 

by the Polarization Fixed Point Method (PFPM)[4]. 

In this paper, we employ the eddy-current equation 

for solving the time-periodic electromagnetic field 

problem in ferromagnetic shielding.  Following the 

PFPM scheme, the nonlinear media is replaced by a 

linear one having the vacuum permeability and a 
magnetization that is iteratively corrected by the flux 

density. Using the Fourier decomposition of the 

magnetization, each harmonic of the electromagnetic 

field is computed by solving the complex form of the 

eddy-current equations, the sources being the imposed 

current and the magnetization harmonics. Having the 

eddy-currents, we may obtain the harmonics and the 

time evolution of the flux density. The time values of the 

magnetization are corrected by the flux density.  The 

number of linear systems of equations that is to be 

solved, at each iteration step, is given by the number of 

harmonics taken into account, which makes this method 
very efficient. The iterative scheme can be started with a 

small number of harmonics in order to further increase  

efficiency. 

 

II. TREATMENT OF THE B-H NONLINEAR 

RELATIONSHIP 

 

The nonlinear relationship H = )(BF  is replaced by 

 

 )( MHB 0             (1) 

 

where M  has a nonlinear dependence of B [4], 

 

 )F( BBM 0 )(BG        (2) 

 

where 
0

0
1

 and the function G  is a  contraction, 

i.e.  

0
21 GG )()( BB  

0
21 BB  (3) 
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The norm is 

 

 
0

U =

T

dtd
T

0

0
1

)( UU   (4)  

 

with T  being the period and  the space region.  

The time-periodic M has a Fourier series expansion 

of the form 

 

 

,...3,1

)cos(")sin(')(

n
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For the numerical computation, we retain a finite 

number N of harmonics, M )(MM Ya , the 

approximation Y  being non-expansive, i.e.  

 

0
21 YY )()( MM

0
21 MM .  (6) 

 

For each harmonic n of the magnetization M, we use the 

complex representation 

 

nnn j "' MMM   (7) 

 

and we obtain the sinusoidal steady-state 

electromagnetic field by solving the eddy-current 

integral equation of the form 

cx)( jn    (8) 

 

where x is the vector of the current density, c is the 

known complex vector given by the sources and by nM , 

and  and  are square matrices that do not depend on 

the harmonic order. Now, for each harmonic the 

complex flux density 

 

nnn j "' BBB    (9) 

 

may be computed using the Biot-Savart-Laplace 

formula. From nB , we obtain the time-domain value of 

the flux density as 

 

12,...,3,1

)cos(")sin(')(

Nn

nn tntnt BBB )( aML .   

(10) 

It can be shown that L  is also non-expansive. At each 

step 1k  of the proposed iterative process, we perform 

the following chain of operations 

 

1kk
a

kk
BMMB

LYG
, 

 

with 
1

B  arbitrarily chosen. Since the composition of 

G , Y and L  is a  contraction, the iterative process is 

always convergent. Instead of systems of equations 

corresponding to each time step in time-domain 

methods, using the above method, one has to solve only 

N linear complex systems, at each iteration. In order to 

further reduce the amount of computation, we start with 

a small number  N of harmonics (even with N = 1). 

Since the inequality (6) is stronger when the number of 

harmonics is smaller, the rate of convergence is now 

higher. When an imposed accuracy is reached, we 

increase the number of harmonics until the resultant 

field is accurately determined. 

III. EDDY-CURRENT INTEGRAL EQUATION 

 

 An advantageous feature of the proposed method 
allows the construction of an integral equation for the 

current density to be solved at each iteration [5].  

  For two-dimensional structures this integral equation 

can be written in the form 
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where  and J are, respectively, the resistivity and the 

current density in the conducting regions , 0J  is the 

given current density in the nonferromagnetic coil 

regions 0 , r and r’ are the position vectors of the 

observation and the source points, respectively, 

,
rrR , RR , and k is the longitudinal unit 

vector. lC  is a constant for each disjoint conducting 

region l and is determined by specifying its total current.  

To illustrate the formulation, we choose only one 

conducting region  with a null total current, when 

C = 0.  is divided in I subdomains i and 0  in Q 

subdomains q0 . Equation (11) is discretized as 
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where m , mS , and mJ  are, respectively, the 

resistivity, the area, and the average value of the current 

density of the subdomain m , qJ0  is the imposed 

current density in the subdomain q0 , iM  is the 

magnetization in i , and 
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i  is the boundary of the subdomain i  and in  is the 

outward normal unit vector on i . The system (12) 

can be written for each harmonic n in a matrix form as 
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where  is the matrix of mi ,  is a diagonal matrix 

with the entries /mmmm S , Im ,...,2,1 , nJ '  

and nJ"  are the column vectors of the real and 

imaginary parts of the complex current density nJ , 

nA 0' , nA 0"  and MnA' , MnA"  are, respectively, the 

column vectors of the real and imaginary parts of the 

complex vector potentials integrated over the respective 

subdomains m , nA0  due to the imposed current 

density and MnA  to the magnetization, i.e. 
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nA0  is the same for all iterations, while MnA  is to be 

corrected at each iteration.  

 After solving system (16), the complex flux 

density is obtained from 
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The average value of the complex flux density in the 

subdomain m  is computed as 
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I

i

inmi
m

J
S

1

,
1

γ

I

i

inmi
1

,M + mn,0B      

(20) 

where mn,0B  is the flux density due to the imposed 

current density, the same at all the iterations, 
 

mn,0B =

Q

q

qnmq
m

J
S

1

,0
1

γ              (21) 

and 
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the latter being expressed in terms of the dyads 

)'( imdd ll . The numerical approximation of mn,B  due 

to averaging is non-expansive and, thus, preserves the 

convergence of the iterative process, while the system 

(16), corresponding to the integral equation (11), could 

perturb the convergence in the case of large differences 

in differential magnetic permeability. At any time t, the 

flux density is obtained with (10), the magnetization is 

corrected with (2) and, then, used to compute the new 

complex expression in (7), with 

 

T
n dttnt

T 0
)sin()(

2
' MM , 

T
n dttnt

T 0
)cos()(

2
" MM .        (23) 

 

IV. ILLUSTRATIVE EXAMPLE 

 

Let us consider the U form shield depicted in Fig. 1, 

having a 5mm thickness, 300mm wide and 100mm long 

arms. The ferromagnetic material used has a B-H 

characteristic plotted in Fig. 2. The two parallel  
conductors carry opposite direction currents, each of  

800A-turns, at 50Hz. Field lines for 090t  are 

presented in Fig. 1. Flux densities in the two cases 

(without the shield 0B  and B with the shield) are plotted 

along a 320 mm wide line placed at 4.5 mm above the 

shield (Fig. 3). The shielding efficiency is computed 
using the following relation:  
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Fig.1. U-form ferromagnetic shield. 
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Fig.2. B-H characteristic. 
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where N is the number of the selected points on the line 

placed behind the shield. We obtain ecr = 0,233. 

V. REMARKS AND CONCLUSION 

 

 Computation  was  performed  by  employing  a  PC 

with a 2.8 GHz processor and 2GB of RAM.  Firstly, we 
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Fig.3. Flux densities behind the shield 

 

consider only the fundamental harmonic and we need 30 

iterations for an error of 0.12%. To obtain a higher 

accuracy, we add the 3-th harmonic. The solution is very 

close to the first one because the ferromagnetic domain 

occupies  only a small area in the path of magnetic lines.   

 The same problem was solved by a hybrid 

FEM-BEM technique [7], and the same solution was 

obtained. 
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