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Abstract – This paper presents the eddy currents 
distribution in the melting process of non-ferrous 
alloys. The obtained results offer us some valuable 
information about the melting of non-ferrous alloys 
and about ways of optimizing the electro-technique 
equipment design for induction heating machines. This 
paper also presents a method to determine the 
evolution of the solidification layer in controlled 
casting techniques 
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I. INTRODUCTION 
 

The computation of the losses due to eddy current is 
a problem of great technical interest. Most of the time 
these losses are not desired and designers try to reduce 
them. Other times these losses are useful because of 
their heating effect, allowing the heating of certain parts 
of a conductor. To determine the losses due to eddy 
currents involves the computation of the electromagnetic 
field in conductors, thus solving complicated quasi-
stationary regime problems, [1, 4, 5, 6]. 

The literature presents different approaches to 
determine the electromagnetic field in quasi-stationary 
regime, in linear and non-linear conductors, immobile 
mediums, 2D structures, [2]. Given the great 
development of computational power, researchers focus 
on developing some algorithms to solve numerically the 
eddy currents problem in 3D structures, [3]. 
 

II. EDDY CURRENTS DISTRIBUTION 
 

Let us consider the geometry depicted in Fig. 1. It 
contains a conducting domain Ωc surrounded by an 
unbounded non-conducting domain Ω0 (e.g. air). The 
current sources (coils) are situated here. Let us denote 
by ∂Ωc the surface bordering the conducting material 
and by ∂Ω0 the outer boundary. In the free space region 
Ω0 the following Maxwell equations are valid in the 
quasi-stationary limit: 
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where J0 represent the impressed current sources. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.  Domain configuration for eddy current problems 

 
In the conducting domain we have: 
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where J is the density of the induced eddy currents. On 
the outer border ∂Ω0 typically two types of conditions 
may be encountered: 
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on the condition that 0Ω∂=Ω∂∪Ω∂ HB . These are 
called longitudinal boundary conditions. If ∂ΩH consist 
of n non-overlapping surfaces in order to ensure the 
uniqueness of the field problem on n-1 the magnetic 
fluxes have to be given: 
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On the ∂ΩC interface the following continuity 
conditions are to be imposed: 
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where subscript C denote conducting region and 0 air 
region. 

Usually a potential solution to the problem is 
preferred. In the following we refer to the A, V – ψ one 
[3]. This means using magnetic vector potential in ΩC 
together with scalar electric potential combined with the 
use of magnetic scalar potential in the non-conducting 
area. 
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In ΩC the use of potentials A and V yields the 
following second order equation: 
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which includes also the divergence free condition 
verified by the induced eddy currents J (ν=μ-1). To 
obtain a significant reduction of computing effort in Ω0 
we use the following decomposition: 

φ∇−= 0HH  (7) 
where H0 is the field due to source currents and can be 
easily computed by Biot-Savart-Laplace relation. φ is 
reduced magnetic scalar potential. We restrict the use of 
φ to only the sources region. In the source free regions 
of Ω0 in order to avoid some cancellation of errors we 
use: 

ψ−∇=H  (8) 
where ψ is total scalar magnetic potential. Consequently 
in Ω0 the second order equation is given by: 

0=∇⋅∇ ψμ  (9) 
The outer boundary conditions became now: 
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whilst the interface boundary conditions can be written 
as: 
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The fact that the eddy currents cannot flow across 

∂Ωc the boundary amounts to imposing on ∂Ωc the 
following: 
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If conductivity is constant in domain Ωc it can be 

shown [3] that scalar potential V is constant in Ωc and 
hence it can be chosen to be zero. Thus (12) becomes 
unnecessary. Hence A becomes in fact a modified vector 
potential [3]. 
 

III. EXPERIMENTAL RESULTS 
 

The computations for the eddy currents, for the 
melting process of a siliminum alloy, were made using a 
125 kg capacity melting furnace. The heating process 
from 20o to 690o takes about 2158 sec. The module used 
for the numerical modeling of the heating process is 
“Magneto-Thermal”. This software automatically 
couples the magneto-dynamic module with the 
transitory thermal module. 

Fig. 2 presents the experimental model that we used, 
which has the following components: non-ferrous 
molten, siluminum (1), crucible (2), coils of the inductor 
(3), thermal insulating material, fire clay (4), insulting 
material, asbestos (5) and fireproof concrete (6). 

 

 
Fig.2.  The experimental model. 

 
Fig. 3 presents the current density at the beginning of 

the melting process t ≅ 5 sec. 
 

 
Fig. 3.  Current density at t ≅ 5 sec. 

 
Fig. 4 presents the current density during the melting 

process t ≅ 1100 sec. 
 

 
Fig. 4.  Current density at t ≅ 1100 sec. 

 
Fig. 5 presents the current density at the end of the 

melting process t ≅ 2200 sec. 
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 Fig. 5.  Current density at t ≅ 2200 sec. 
 

The variation of the power density at the beginning 
of the process, t ≅ 5 sec, is presented in Fig. 6. 

 

 
Fig. 6.  Power density variation at t ≅ 5 sec. 

 
Fig. 7 presents the variation of the power density 

during the melting process t ≅ 1100 sec. 
 

 
Fig. 7.  Power density variation at t ≅ 1100 sec. 

 
The variation of the power density at the end of the 

process, t ≅ 2200 sec, is presented in Fig. 8. 

 
Fig. 8.  Power density variation at t ≅ 2200 sec. 

 
Fig. 9 presents the magnetic field intensity at the 

beginning of the melting process t ≅ 5 sec. 
 

 
Fig. 9.  Magnetic field intensity at t ≅ 5 sec. 

 
Fig. 10 presents the magnetic field intensity during 

the melting process t ≅ 1100 sec. 
 

 
Fig. 10.  Magnetic field intensity at t ≅ 1100 sec. 

 
Fig. 11 presents the magnetic field intensity at the 

end of the melting process t ≅ 2200 sec. 
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Fig. 11.  Magnetic field intensity at t ≅ 2200 sec. 
 
 

IV. CONCLUSIONS 
 

As analytical methods don’t provide precise 
solutions, the utilization of numerical methods that 
allow the solving of problems with hundreds of 
unknowns in discrete representation is imposed. 

The accurate knowledge of electromagnetic 
phenomena in the case of induction heating as well as 
the distribution of thermal field allows the analysis and 
the optimal design of electro-thermal equipment. The 
obtained results offer us some valuable information 
about the melting of non-ferrous alloys and about ways 
of optimizing the electro-technique equipment design 
for induction heating machines.  

The knowledge of electromagnetic and thermal 
fields in a heating process allows the access to the 
computation of global performances in transient or 
permanent regime. 
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