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Abstract – This paper presents the use of neural 
networks in the study of electromagnetic interferences 
between high voltage power lines and metallic 
underground pipelines, for various constructive  
geometries. Results gained with neural networks are 
compared to the finite element solutions considered as  
standard ones. Our contribution relates to the 
implementation of the neural network AI technique, to 
the study of electromagnetic interference problems and 
the testing of the neural networks used in the studied 
case. 
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I. INTRODUCTION 
 

Electromagnetic interference study between high 
voltage (HV) power system lines (PSL) and nearby 
unburied or buried metallic pipelines (MP) presents a 
great importance, given by the induced AC potentials. In 
most of the cases to reduce construction costs of gas, 
water or oil pipelines, they must share the same 
distribution corridor with HVPSL. Induced AC voltage 
in these MP could be very dangerous on both the 
personnel that may come in contact with them and on 
their structural integrity, due to electrical corrosive 
effects. In case of one phase or two phase PSL faults, 
induced AC voltages in unmitigated MP can reach 
thousands of volts [1]. 

Generally, electromagnetic interference problems are 
studied through the finite element method (FEM).  As in 
all other engineering fields, FEM shows successful 
solutions in the numerical evaluation of the variation 
model, describing electromagnetic field problems. 

Although the FEM yielded solutions are very 
accurate, regardless to problem complexity, the 
computing time of this method increases with the 
geometry, its mesh, material characteristics and 
requested evaluation parameters.  

Since, on each new problem geometry taken under 
consideration FEM involves a remesh and a new 
evaluation of the calculus, the study of electromagnetic 
interference between HVPSL and MP for different 
system configurations requires expensive computing 
time.  

Therefore, a scaling method of the results from one 
configuration case to another may be of interest if it 
provides less computing time. Currently two artificial 
intelligence based methods are studied worldwide: 
Fuzzy Logic Systems (FLS) and Neural Networks (NN). 
Our concern deals the last.    

 
II. NEURAL NETWORKS 

 
Neural Networks belong to a group of artificial 

intelligence techniques (AI), for data analysis that do not 
resemble with other classical analysis techniques.  AI 
are learning about the chosen subject from de data 
provided to them, rather than being defined by user. NN 
get their knowledge by detecting relationships between 
input data [2]. 

 
A. Structure of an Artificial Neuron 

 
Neural Networks were designed after the human 

brain neural network model. Like in the human brain 
case, the major building block of any neural network is 
the artificial neuron.  

 
Fig. 1 Basic block diagram of an artificial neuron 

 
As it can be seen from its block diagram (figure 1) 

an artificial neuron is a system which has a variable 
number of inputs mkuk ,1 , = and only one output y.  The 
m inputs of the artificial neurons are multiplied by some 

kw parameters, called weighs and added to each other. 
The weighted inputs sum is added to a parameter b 
called bias. Then the last sum, denoted by h is used as 
an argument of the function which produces the artificial 
neurons output. This function is called transfer function 
and can take various forms, specific to each neuron in 
particular. Thus the artificial neurons output is: 

)(hfy a=  (1) 
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where: 
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Weights and biases of artificial neurons are 
parameters that can be modified. Usually, their values 
are set up when the neural network is trained for the 

desired behavior. So an artificial neuron output depends 
only on its inputs and on its transfer function. 
The most commonly used transfer functions in neural 
networks, with context relevance, are presented in the 
following table: 
 
 

Table 1. Usually used Transfer Functions 
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B.  Neural Networks Structure 
 

The structure of a neural network is specified by the 
number of layers, the transfer functions used in each 

layer and the numbers of neurons which compose a 
certain layer.   

A group of artificial neurons from a layer work in 
parallel, have the same inputs and their outputs have the 
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same destination. The block diagram of a layer is 
presented in figure 2: 

 
Fig. 2 Basic block diagram of a layer 

 
The structure of any neural network must contain at 

least one layer of neurons, but can join as many as 
someone projects. The layer gathering the neurons 
which give the neural networks output is called output 
layer. This layer cannot miss from a NN structure. 
Layers which contain the neurons interposed between 
the global inputs of the neural network and the inputs of 
the neurons from the output layer are called hidden 
layers.  The hidden layer whose inputs are the same to 
the global inputs of the neural network is also called 
input layer. 

Usually, there are used feed-forward NN which 
contain a hidden layer and the output layer. The transfer 
function used for feed-forward networks must have a 
determinable derivative. For example, the hidden layer 
uses the hyperbolic tangent function, as the linear 
function is used in the output layer. Figure 3 presents the 
simplified block diagram of a two layer feed-forward 
neural network. 

 
Fig. 3 Feed-forward Neural Networks  

 
From this block diagram, we can deduce the 

relationships which define a feed-forward NN outputs, if 
we know its inputs mkuk ,1 , = . The argument of the 
hidden layer neurons transfer function is:    
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So, the hidden layer neurons output is described by the 
following relationship: 
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The argument for the transfer function of hidden layer 
neurons is:    
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Finally, the feed-forward neural networks outputs are 
given by relationship (6): 
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II. PROBLEM DESCRIPTION 
 

In this paper we evaluate the magnetic vector 
potential (MVP), on the MP for the electromagnetic 
interference problem presented in [3]. The problem 
refers to a buried metallic gas pipeline which shares the 
same distribution corridor with a 145 kV HVPSL and 50 
Hz frequency. Figure 4 shows a top view of the common 
distribution corridor:  

 

 
Fig. 4 Top view of the parallel exposure   

 
It is assumed that a phase to ground fault at point B, 

far away outside the common HVPSL–MP distribution 
corridor, occures. The earth current associated with this 
fault has a negligible action upon the buried pipeline. 
This fact allows us to assume only an inductive 
interference caused by the flowing fault current in the 
section where the HVPSL runs parallel to the buried gas 
pipeline.  

The HVPSL consists of two aluminum steel 
reinforced conductors per phase. Sky wire conductors 
have a 4 mm radius, the gas pipeline has a 0.195 m  
inner radius, a 0.2 m outer radius and a 0.1 m coating 
radius. The characteristics of the materials in this 
configuration have the following properties: the soil is 
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assumed to be homogeneous, MP and sky wires have a 
050.7 += Eσ S/m conductivity and a 250=rμ  relative 

permeability [3]. 
End effects are neglected, leading to a two 

dimensional (2D) problem which depends on the 
separation distance d between HVPSL and MP, on the 
soil resistivity ρ , on the x and y coordinates of the point 
where the magnetic vector potential is desired to be 
determined. Figure 5 shows the studied configuration 
cross section: 

  

 
Fig 5. Cross section of the system under investigation 

 
III. NEURAL NETWORK IMPLEMENTATION 

 
In [3] and [4] there are disscused two fuzzy logic 

systems to evaluate the amplitude and the phase of 
magnetic vector potential. We intend to implement two 
neural networks for calculation of magnetic vector 
potentials amplitude and phase in different HVPSL–MP    
configuration, starting from some training data, which 
have been obtained using FEM calculus in [3] and [5]. 
The data sets, used to train our two neural networks are 
presented in Table 2. 

To implement the amplitude and the phase neural 
networks, we use the Neural Network toolbox from the 
Matlab software, especially the newff function. This 
Matlab function creates a feed-forward neural network 
and is called as follows: 

 
net=newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) 

where: 
• P - a qr ×  input data matrix (r – neural networks 
inputs number, q – training data set length); 
• T  - a  qo ×  target data matrix (o – neural networks 
outputs number); 
• S - a list of hidden layers sizes; 
• TF - the  list of transfer functions used for each layer 
(tansig – the hyperbolic tangent function for hidden 
layers and purelin –linear function for the output layer); 
• BTF - the backpropagation network training function 
(default is trainlm - the Levenberg-Marquardt training 
function); 
• BLF - denotes the backpropagation weight/bias 
learning function (default is learngdm – the gradient 
descent w/momentum weight/bias learning function); 

• PF  - the performance function (default is   mse – the 
mean squared error function); 
• IPF  - a list of input processing functions; 
• OPF  - a list of output processing functions; 
• DDF - the data division function.     

 
It is no need to give all the parameters of newff 

function to call it; there are must be given only the ones 
which have a different value from Matlabs default 
values [6].  
 

Table 2. Data Base used to train the Neural Networks 
 

  
 
To evaluate the amplitude of PMV we used a     

feed-forward neural network with 10 neurons in hidden 
layer and one neuron on the output layer. The hidden 
layers neurons use the tansig, hyperbolic tangent 
transfer function, and the output layers neuron uses the 
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purelin, linear transfer function. As performance 
function we used the msereg, mean squared error with 
regularization function. For the remaining neural 
network defining functions were kept at Matlabs default 
functions.  

To calculate the phase of PMV we also used a    
feed-forward neural network with 10 neurons in hidden 
layer and one neuron on the output layer. The hidden 
layers neurons appeal the tansig, hyperbolic tangent 
transfer function, and the output layers neuron uses the 
purelin, linear transfer function. But in this case as 
performance function we needed the mse, mean squared 
error function. The remaining neural network defining 
functions were kept also at Matlabs default functions.  

To train these two neural networks we chose the 
train Matlab function, which is called as follows: 

 
net=train(Net,P,T,Xi,Ai) 

where: 
 
• Net is the neural network which has to be trained; 
• P is the networks inputs list; 
• T  is the networks target outputs list; 
• Xi is the initial input delay condition (0 by default); 
• Ai is the initial layer delay condition (0 by default).  

To obtain a higher accuracy for the results given by 
the two neural networks the training data base presented 
in Table 2 was multiplied twenty times.   

The training process for both amplitude and phase 
neural networks took less than 10 seconds. 

 
IV. NUMERICAL RESULTS 

 
After training the two neural networks we verified 

the solutions provided by them. Therefore, we have 
compared the results obtained through the neural 
network method with the ones provided in [3] with 
FEM. The comparison was done for the training data set 
and also for a testing data set presented in table 3: 

 
Table 3. Data Base used to test the Neural Network 

 

 
 
 

To test the implemented neural networks for MPVs 
amplitude and phase, we used the sim Matlab function, 
which may be called as follows: 

 
ResData=sim(Net,TestData) 

where: 
• Net - the neural network which has to be tasted; 
• TestData - the input data used to test the neural 

network; 
• ResData - the matrix where are placed the 

obtained outputs for the testing data set. 
The results are presented in the graphical form of the 

absolute deviation between the solutions given by the 
implemented neural networks and those provided by 
FEM, as we can see in the following figures:  
 

 
Fig. 6 Absolute deviation of amplitude for the training data 

 

 
Fig. 7 Absolute deviation of amplitude for the testing data 

 

 
Fig. 8 Phase absolute deviation for the training data 
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Fig. 9 Phase absolute deviation for the testing data 

 
V. CONCLUSIONS 

 
From the above presented figures it can be seen 

that absolute deviation of the solutions provided by the 
implemented neural networks, to those provided by 
FEM are small, almost insignificant for the training data 
incomes and somewhat higher but still negligible for the 
testing data incomes. 

The evaluation of the MPV for different geometrical 
configurations, using neural networks is a very effective 
one, especially if we take into account the fact that the 
solutions provided by neural networks are obtained 
instantaneously and we do not have to pay expansive 
calculus as with FEM. 

Our contribution relates to the implementation of the 
neural network AI technique, to the study of 

electromagnetic interference problems and the testing of 
the neural networks used in the studied case. 
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