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Abstract - "Fractal" term - which in Latin language 
defines something fragmented anomalous - was 
introduced in mathematics by B. B. Mandelbrot in 
1975. He avoided to define it rigorously and used it to 
designate some "rugged" and "self-similar" 
geometrical forms. Fractals were involved in the theory 
of chaotic dynamic systems and used to designate 
certain specific sets; finally, they were “captured” by 
geometry and remarked in tackling of the boundary 
problems. It proved  that the fractals can be of interest 
even in the signal’s theory. 

 
 

I. INTRODUCTION 
 
In the category of fractals there are included also the 
images whose description by conventionally ways of 
mathematics is, in principle, impossible.  
If to a 2D image (x, y) is added a third dimension (t), we 
have a bi-dimensional fractal signal. In such a signal, the 
fractal nature is manifested in (x, y) plan, having no 
connection with temporal dimension. 
In order to consider a scalar signal as a fractal signal, the 
scalar signal has to fulfill three conditions related to the 
time domain:  

- signal’s chart extension on time domain has to be 
endless,  

- scalar signal has to be continuous everywhere and  
- signal has not to have a differential form on time 

domain. 
The structure of fractal signal proposed in this paper is 
only one from an infinity of structures to be imagined. 

 
 

II. THE CONSTRUCTION OF A  
FRACTAL SIGNAL 

 
The construction of a fractal signal is realized on the base 
of some periodic pulses, as shown in Figure 1.  
Let’s consider a period of time  
T0 = 4τ0  
for the first alternation (half-period) T+ (considered 
centered by the axis of the time).  
The first component, x0(t), is a continuous signal and its 
amplitude is equal with the unit. The following 
components, x1(t), x2(t), a.s.o. are bipolar pulses derived 
by division to 3 of the alternation (half-period).  

The components xi(t) are described by the following 
mathematical equations: 
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 Figure 1 - Fractal signal’s components. 
 
 
If, for the first period, the summation of the signal’s 
components is done according to the following relations 
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and the result is divided into periods, we obtain the 
fractal signal: 
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The evolution of signal’s aspect during its making-up is 
shown in Figure 2.  
The superscripts "+" and "-" assigned to function x(t), 
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x+(t), respective x-(t), say that these are defined on the 
half-periods T+ and T-, presented in the Figure 1.  
The described fractal signal does not belong to the class 
of the functions defined in this paper as signals. Its 

continuity and non-differentiability are thoroughly 
remarked from its making-up process; also, it is remarked 
that it integrates a infinity of first rang discontinuity 
points. 
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Figure 2 - Fractal signal’s making-up process. 
 

Every time this signal’s amplitude belongs to the interval 
[-2, 2]. Clearly, its contour length comprises two 
constructional parts:  

- one of them, on the time axis, being finite,  
- the other one, made of the amplitudes (the sum of 

amplitude “jumps”), being infinite.  
Over a period T0 this length is: 
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where  u is the unit amplitude. 
Note: The nature of fractal signal is given by the x+(t) 
function. Considering function x(t) divided into periods, 
we can conclude that some fractal signals could be 
“everywhere” and others exist only on given time 
intervals. 
 
 

III. SPECTRAL ANALYSIS OF FRACTAL SIGNAL 
 
From spectral point of view, being conceived as a 
periodical function, to this type of signal corresponds a 
spectrum made from lines. First of all, for its 
determination, we will proceed to the dividing into 
periods of xi

+(t): 
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The next step consists in determination of Amplitude 
Spectral Density Function, ASDF:  
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The determination of Fourier Transform FT for ( )[ ]−
0Ti tx  

functions it will be done similarly. Having in view that 
these are the result of inversion and translation of 
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( )[ ]+
0Ti tx  functions, we have: 
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By summation of components’ contributions on both  
semi-periods,  the  spectrum generated by a component 
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The spectrum of sf(t) is the summation of components’ 
spectra:  

( ) ( )∑
∞

=

ω−+












−ω=ω

0i

2
Tj

if

0

e1XS                                    (11) 

The terms containing Sa(ωτ0) function (see relations 8) 
are part of the following expression, A(ω): 
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This expression is equal to zero due to the first factor. 
Thus, the relation (11) should be written as we can see 
below: 
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Taking into consideration that this relation is unequal to 
zero on frequencies 
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the signal’s spectral function may be written as the 
multiplication of convolute function Sfc(ω) by Dirac 
impulse series 
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The expression of convolute function is: 
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we can write: 
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Finally, ASDF of the fractal signal already described is 
done by the relation 
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and is presented in Figure 3.  
The fractal signal being even, its Fourier Transform is 
real. It can be noticed that to the rugged form from the 
temporal domain corresponds a conventional convolute 
function. 
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Figure 3 - Spectral presentation of the fractal signal. 
 
 

IV. PROBABILITY ANALYSIS OF FRACTAL 
SIGNAL 

 
It is interesting to analyze this type of signal from 
probabilistic point of view. Therefore, if we consider the 
set of time intervals i30τ whereon si signal doesn’t 
change its value (see Figure 2) and accept the idea that 
their distribution is uniform on t axis, it is possible to 
define fractal signal’s probability density function p(s) as 
a weight of the temporal intervals length in which the 
signal takes a certain value on the temporal axis’ length.  
By successive summation, our result is the percentile 
P(s), as we can see in Figure 4. Because the structure of 
fractal signal is similar in both positive and negative 
domain, these function’s form were presented in Fig. 4 in 
positive domain only. 
Given the signal’s nature, the probability density function 
is formed by weighted Dirac impulses, and the percentile 
by a multi-stage function.  
Construction of the probability density function begins 
from the case of s1 density probability function (which 
presents two lines of amplitude 0,5δ ) and is realized 
according to the following rule: every line corresponding 
to the signal si generates two lines for the signal si+1,  
delayed with ±2-I from the line corresponding to the 
signal si . Their size is in a ratio of ½, the biggest line 
being that one which is situated on s axis.  
When the index i is in infinite sub-domain, the lines’ 
amplitudes which forms the probability density function 
becomes finite, and the distance between them becomes 
infinitesimal. 
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The percentile function, beyond the aspect relatively 
common, does not show a characteristic of the fractal 
signal, because its bent can vary from a line to another; 
when the index i comes into infinite values sub-domain, 
P(s) becomes a  non-differentiable function. 

With other words, to the fractal signal we can associate - 
by construction - the pair formed by the probability 
density function and the percentile function; but, going 
from one to other function is not possible.
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Figure 4 - The construction of probability density function and percentile function 
associated to the fractal signal. 

 
To determine the temporal moments is relative easily. So, 
starting from the construction of the signal, we can 
directly affirm that the average value is zero and, 
consequently, the centered moments will be equal with 
the direct moments. Therefore, the dispersion will be 
equal to the second order moment and - because of the 
signal’s similitude on the space of T+ and T+ - it may be 
calculated on the positive alternation 
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and it has the finite value 2/(3τ0). 
 
 

V. CONCLUSIONS 
 
A thought-provoking problem is to frame this signal into 
an ordinary class.  
If the index i is finite, the signal is determined, this 
meaning that the signal is altogether knowable, on its 
entire evolution. 
If the index i is situated into infinite values sub-domain, 
the signal is one of fractal type and the associated 
probability density function and percentile function take 
some specific characteristics from the fractal signal.  
This signal isn’t a stochastic process, its values domain 
being not a set of random variables. But, because it is 
possible to be known in its any point, it may be 

assimilated to a stochastic process’ trajectory. Anyway, 
there is a very important difference.  
It is well known that a certain trajectory of a stochastic 
process can’t be recovered on the base of an value set, as 
much and as well this set is chosen. In the case of the 
fractal signals, besides a values set, it is known a very 
important thing – the construction’s algorithm. The 
problem is to find the best way for enlarge its cognition in 
comparison with the case of a certain trajectory of a 
stochastic process. 

Some applications of the fractal signals: 

The study of fractal signals has proved to be important in 
several scientific domains. The examples of processes 
described by such functions include: bio-signals (by 
example, heartbeat oscillations), elementary cellular 
automata, speech signals, communications (by example, 
network traffic), etc. These possible applications are 
shortly presented below: 
   - Using analysis methods for quantify long-range 
power-law correlations in noisy heartbeat fluctuations, the 
human heartbeat dynamics under healthy and pathologic 
conditions can be analyzed. There were found power-law 
correlations which indicate the presence of scale-
invariant, fractal structures in the human heartbeat. There 
is recent work that quantifies multi-fractal features in 
cascades. The multi-fractal structure of healthy dynamics 
is lost with congestive heart failure [5]. These analytic 
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tools may be used also on a wide range of other 
physiologic signals and the findings may lead to new 
diagnostic applications. 
   - Computing the power spectra of the one-dimensional 
elementary cellular automata, some interesting results can 
be obtained: on the one hand, the analysis reveals that one 
automaton displays 1/f spectra though considered as 
trivial; on the other hand, various automata classified as 
chaotic or complex display no 1/f spectra. Generalizing 
the Sierpinski signal to a class of fractal signals that are 
tailored to produce 1/f spectra, a model of the one-
dimensional elementary cellular automata results can be 
obtained. From the widespread occurrence of  elementary 
cellular automata patterns in chemistry, physics, and 
computer sciences, there are various candidates to show 
spectra similar to these results [6]. 
   - Fractals can model many classes of time series data. 
An important characteristic is fractal dimension that 
represents the complexity of the time series data. In 
particular, in analysis of speech signal, the fractal 
dimension represents a powerful tool for identification of 
some key features of speech signal (vocals, consonants, 
transition from vocal to consonant and vice versa). For 
measuring the fractal dimension of speech signals several 
algorithms can be used (Higuchi algorithm, 
morphological covering, wavelet based method, etc.). The 
multi-scale fractal dimension can potentially be used to 
discriminate among phonetic classes, with applications in 
automatic speech recognition [7]. 
   - Fractal models have made a major impact in the area 
of communications, particularly in the area of computer 
data networks. Several studies have demonstrated that 
network traffic loads exhibit fractal properties. These 
properties strongly influence network performance. For 
instance, performance predictions based on classical 
traffic models are often far too optimistic when compared 
against actual performance with real data. Fractal traffic 
models allow exciting new insights into network behavior 
and promise new algorithms for network data prediction 
and control [8]. 
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