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Abstract –Wavelet modulation simultaneously sends data 
at multiple rates through an unknown channel. Preuious 
research has demonstrated that wauelet modulation bit 
error rate performance in the additive, white, Gaussian 
noise channel is comparable to theoretical binary phase 
shift  keying. In this paper we extend the inwstigation to 
the performance of wauelet modulation in several time 
varying channels: Rayleigh, flat, s1ow fading channels 
and frequency selective, s1ow fading channels. 
 
 

I. INTRODUCTION 
 

Wavelet modulation has a novel multirate diversity strategy 
that offers improved message recovery over conventional 
modulation techniques: if the rnessage is not received at 
one rate due to channel disturbances, it can be received at 
another rate where the channel is clear. Wornell and 
Oppenh& n proposed fractal modulation and analytically 
calculated its performance in an additive, white, Gaussian 
noise (AWGN) channel [1]. Ptasinski and Fellman 
illustrated Wornell and Oppenheim’s observation that bit 
error rate (BER) performance of one-scale wavelet 
demodulation and binary phase shift keying (BPSK) were 
identical 121. In this paper we examine the performance of 
wavelet modulation (WM) in time varying channels. 
Results for Rayleigh flat fading channels and frequency 
selective channels are compared to the AWGN channel and 
to the expected performance of BPSK in a flat fading 
channel. We evaluate WM performance in the context of 
military and cellular communication applications; thus, our 
results shed light on the suitability of wavelet modulation 
as a technique for signal transmission in a mobile 
environment. 

 Section 2 presents an overview of the discrete wavelet 
transform and wavelet modulation. Section 3 describes the 
pertinent implementation issues and the channel models. 
Section 4 depicts the performance of wavelet modulation in 
the AWGN, flat fading and frequency selective channels. 
Our conclusions are highlighted in Section 5. 
 
 
 
 

 

 
II. DWT & WAVELET MODULATION 

 
The discrete wavelet transform (DWT) of a signal s(t) is 
given by 
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where )(tψ  is the wavelet function [3]. Equation (1) 
represents the DWT and the SF are called the wavelet 
coefficients; equation (2) is the inverse discrete wavelet 
transform (IDWT). (Associated with )(tψ  is a 
corresponding scaling function, )(tφ , and scaling 

coefficients, m
na . Mallat’s fast wavelet transform (FWT) 

provides a computationally efficient, practical, discrete 
time algorithm for computing the DWT 131. The scaling 
and wavelet coefficients at scale m can be computed from 
the scaling coefficients at the next finer scale m+1 using 
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where h[n] and g[n] are the lowpass and highpass filters in 
the associated a-channel analysis filter bank. Equations (3)-
(4) represent the FWT for computing the DWT (1). 
Conversely, it is possible to reconstruct the scaling 
coefficients 1+m

na  by 
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Equation (5) represents the IFWT for computing the 
IDWT; it corresponds to the 2-channel synthesis filter 
bank.  
The wavelet modulated signal to be transmitted, s(t), can be 
generated via 
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where x[n] is the data that is modulated onto the wavelet at 
different scales. In a practical system x[n] is modulated 
onto a finite number of contiguous, octave-width frequency 
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bands (i.e. Mm∈  where M  is a finite set of contiguous 
integers). 

III. METHODOLOGY 
 

The data to be transmitted takes on one of two equally 
likely values 

[ ] { }bb EEnx −+∈ ,     (7) 
 where Eb is the energy per bit. The wavelet coefficients of 
s(t) correspond to the data x[n]. Thus, x[n] is used in place 
of m

ls  in (5) to obtain the approximation of s(t) at scale m 
+ 1. The data to be modulated at the first scale (scale 10), 
is given by the vector 

.x[1023]] x[1],....[x[0], [x]  x10
l == . Twice the 

amount of data is required for modulation at the next higher 
scale. A periodic replication of the data results in 
[ ] .x[1023]] x[1],.... x[0],.x[1023], x[1],....[x[0], [x]  ==xx

.Then 12
na -the approximation of s(t) at scale 12- is 

obtained via (5). Two wavelets are employed in the 
simulations: the Daubechies N = 4 wavelet and the 
Daubechies N = 8 wavelet. Both are orthogonal, compactly 
supported wavelets. The N = 8 wavelet has 8 vanishing 
moments and a support length of 15; the N = 4 wavelet has 
4 vanishing moments and a support length of 7. 

 In the AWGN channel, zero-mean white Gaussian 
noise is added to the transmitted signal s(t), so that the 
received signal r(t) can be represented as  
   n(t)  s(t)  r(t) +=      (8) 
where n(t) is a zero-mean white Gaussian noise process 
with power 2/0N  

Small scale fading is comprised of two independent 
mechanisms: the time spreading of the signal and the time 
varying behavior of the channel. A doppler shift causes the 
time varying behavior of the channel. In our WM 
experiments, we employed two doppler shifts. For military 
communications, frequency allocations are in the 900MHz 
range; assuming a vehicle speed of 45mph, the doppler 
shift is fd = 6OHz. For cellular communications, a carrier 
frequency of fc = 1800MHz, and a vehicle speed of 45mph 
results in a doppler shift of fd = 120Hz 
In a slow fading channel the symbol period of the signal is 
much smaller than the coherence time of the channel 

cs TT <<  [4]. In our WM trials, the longest symbol period 
occurs at the coarsest scale (scale lo), Ts = 0.977ms. This 
value is much smaller than the coherence time given by 
Tc=7.05ms for fd = 6OHz and Tc = 3.5ms  for fd = 120Hz. 
Hence, the models described in Sections 3.1.3 and 3.1.4 are 
slow fading channels. 

The time dispersion in a multipath environment causes 
the signal to undergo either flat or frequency selective 
fading. If the channel has a constant gain and linear phase 
response over a bandwidth that is greater than the 
bandwidth of the transmitted signal, then the received 
signal undergoes flat fading. In a flat fading channel Ts is 
much larger than the root-mean-square (rms) delay spread 

of the channel, τσ . In our WM trials Ts at scale 10 is 

0.977ms and Ts at scale 13 is sµ122 . The form of our 
simulated model, (9), results in a flat fading channel for all 
scales (i.e. 1013 SS TT <<<τσ ). 
Small scale fading can be modeled as a Rayleigh 
distribution [4, 5]. The received signal is given by 

 n(t)  s(t)ray(t)  r(t) +=    (9) 
As in the AWGN channel, s(t) is the transmitted signal and 
n(t) represents Gaussian noise (it also still dictates the 
SNR). The impact of the Rayleigh, flat, slow fading 
channel is given by the multiplicative ray(t); it is 
coherently demodulated and perfect carrier synchronization 
is assumed at the receiver. 

Frequency selective fading is caused by multipath 
delays which approach or exceed the symbol period of the 
transmitted symbol (i.e. τσ<ST ). In practice, . 

τσ10≤ST , will result in a frequency selective channel-
the channel introduces intersymbol interference (ISI).  
We employed a two ray channel model with an rms delay 
spread of. sµστ 3,15= ; this is comparable to the symbol 

period at scale 13 (i.e. sTS µ12213 = ). For the frequency 
selective fading channel, the received signal is given by 

 n(t)  ) -(t)s(t ray  (t)s(t)ray  r(t) 1100 ++= ταα  where 

0.707  0 =α  and 0.707  1 =α  and S130.25T  =τ , 

(t)ray0  and (t)ray1  have Rayleigh distributed 

amplitudes and uniform phase distributions over )2,0[ π . 
The signal energy in the first term and the power of the 
noise term n(t) determine the SNR of the signal. The sum 
of }(t)rayE{ 2

0
2
0α  and }(t)rayE{ 2

1
2
1α  is set to unity, 

so that the channel has an average gain of unity. 
 

IV.RESULTS 
 

The digital data sequence is generated using equation 
(7) with Eb=1. WM BER performance as a function of 
SNR (given by 0b /NE ) is examined for 5 channels: 
AWGN; Rayleigh flat fading (fd = 60Hz and fd = 120Hz); 
and, frequency selective fading (fd = 60Hz and fd = 120Hz). 
Both the flat and frequency selective fading channels are 
slow fading channels. Demodulation at a particular scale 
utilizes only 1 copy of the received data at that scale; we 
assume that all copies are similar. Our BER results are the 
average of 8 to 10 independent trials. Both the Daubechies 
N = 4 and N = 8 wavelets were used. 

Figure 1 compares the performance of the Daubechies 
N = 4 and N = 8 wavelets in a flat fading channel with a 
doppler spread of 60Hz. There is no appreciable 
performance difference between scales 10 and 11 with the 
N = 8 wavelet; thus, the support size does not appear to be 
important. Results obtained using the Daubechies N = 4 did 
not vary appreciably from the results obtained using the N 
= 8 wavelet for the other channels (even at higher SNRs). 
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Figure1: Bit Error Rate (BER) vs. 0b /NE for 2 different 

wavelets in a flat fading channel with doppler spread 60Hz. 
 

Figure 2 compares the performance of wavelet 
modulation with that of theoretical BPSK modulation in an 
AWGN channel. This figure indicates that the performance 
of WM matches BPSK in an AWGN channel (for both the 
N = 4 and N = 8 wavelets). The WM performance is 
depicted for only one scale (scale 10) since performance 
did not vary across scale. This result verifies Wornell’s 
observations and Ptasinksi’s results 

 
Figure 2: Bit Error Rate (BER) vs. 0b /NE  of WM and 
BPSK in an AWGN channel. WM performance matches 

BPSK and is nearly identical for both wavelets. 
 

Figure 3 depicts a linear BER curve inversely 
proportional to SNR. The curve flattens out at 35dB for 
demodulation at scales 10, 11 and 12; however, the curve 
continues to decrease at scale 13. This improvement can be 
attributed to the slower fading rate of the channel at scale 
13 (since the bit duration decreases for increasing scale, the 
channel is a slower fading channel at scale 13). Figure 4 
illustrates similar performance of WM at scale 13 with the 
theoretical performance of BPSK in a flat fading channel. 
At a given scale, the fd = 60Hz channel is slower fading 
than the fd = 120Hz channel. At high SNR in Figure 4, the 
BER performance of WM in the fd = 60Hz channel is 
slightly better than the fd = 120Hz channel. 
 
 

 
Figure 3: Bit Error Rate (BER) vs. 0b /NE in a flat fading 

channel with a doppler spread of 60Hz. 
 

 
Figure 4: Bit Error Rate (BER) vs. 0b /NE in a flat fatling 

channel with doppler spreads of 60Hz and 120Hz. WM 
performance matches BPSK. 

 
A difference in BER performance across scales was 
expected due to the frequency selective nature of the 
channel. Figure 5 confirms this result. At scale 13 the bit 
error rate is approximately 0.1 dB for all values of 

0b /NE . BER performance improves for decreasing scale: 
performance at scale 10 is better than the performance at 
scale 13. As explained earlier, the rms delay spread of 

sµστ 3,15=  is comparable to the symbol period at scale 

13 (i.e. sTS µ12213 = ); however, at scale 10 the symbol 

period, sTS µ97610 = , is much larger than τσ . The 
intersymbol interference (ISI) adversely impacts scales 12 
and 13, but affects scales 10 and 11 to a lesser extent. The 
results for the 120Hz frequency selective channel are not 
shown. However, the performance was similar to that of 
the 60Hz channel shown in Figure 5.  
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Figure 5: Bit Error Rate (BER) vs. 0b /NE  in a frequency 

selective channel with fd = 60Hz. Scale 13 is severely 
distorted by intersymbol interference. 

 
Figure 6 compares the BER curve for the 3 channel 

types at scales 10 and 13 and fd=60Hz (AWGN is shown 
only for scale 10 since all scales gave identical results). 
WM has the best BER performance in the AWGN channel; 
this is nearly identical to the BER performance of BPSK in 
an AWGN channel. At scale 10 (i.e. low value of ISI), the 
flat fading channel gives better performance than the 
frequency selective fading channel (for 20/NE 0b ≥ ). 
This is due to the presence of the secondary (undesired) 
multipath component, which, if not in phase with the 
primary component will result in errors. However at scale 
13, the BER performance of the flat fading channel is 
significantly better than the frequency selective channel for 
all Eb/No. At scale 13 the frequency selective channel is 
severely distorted by ISI. 
 

V. CONCLUSIONS 
 
There is no significant difference in WM performance for 
the Daubechies N = 4 and N = 8  

 
Figure 6: Bit Error Rate (BER) vs. 0b /NE in the AWGN, 

frequency selective and flat fading channels with fd = 
60Hz. WM in the AWGN channel gives the best 

performance. 
 

 wavelets. WM performance in frequency selective 
channels is dependent on the presence of ISI; WM offers 
the unique advantage that if the rms delay spread is known, 
then the signal could be transmitted and demodulated at 
scales for which the IS1 is negligible. WM performance in 
an AWGN channel is best at all SNRs and the performance 
in a flat fading channel is better than a frequency selective 
channel. Some preliminary results with 
a joint statistic that combines information at several scales 
indicate dramatic BER improvements: a 25dB 
improvement for 2 scales instead of 1 and a 6.5dB 
improvement for 3 scales instead of 2. 
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