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Abstract –The performance of OFDM based systems is 
seriously affected by imperfections in system 
implementation. To gain a beter understanding of the 
influence of these impairments on the performance of 
multiple antenna OFDM systems, this paper studies a 
zero-forcing based MIMO OFDM system with 
imperfections modeled as additive error sources in both 
transmitter (TX) and receiver (RX). Based on this model, 
expressions are derived for the probability of error of 
uncoded impaired MIMO systems in fading and non-
fading environments. These results allow for insightful 
comparison between the influence of TX and RX 
impairments. It is concluded that the influence of RX 
imperfections decreases with an increasing number of RX 
branches, while this is not the case for TX deficiencies. 
 

I. INTRODUCTION 
 

The application of multiple antennas at both 
transmitter (TX) and receiver (RX) side of wireless 
communication systems is proposed in many contributions 
over the last few years. It provides the benefit of increased 
range, robustness and/or improved data rate. This class of 
systems is often named multiple-input multiple-output 
(MIMO), referring to themulti-dimensional wireless 
channel. When applying these techniques to wideband 
communication, the combination of the MIMO 
architectures with the multicarrier technique orthogonal 
frequency division multiplexing (OFDM) is promising. The 
combination, MIMO OFDM, enables the application of the 
narrowband based MIMO techniques to every subcarrier, 
separately. The potential of this physical layer approach 
has led to the numerous proposals in standardization at this 
moment, based on this concept, e.g., in the Wireless Local-
Area-Network (WLAN) group IEEE 802.11. 
Research concerningMIMO OFDMbased systemsmainly 
focusses on systems impaired by additive white Gaussian 
receiver noise and spatial correlated channels. When 
implementing such a system, however, many other 
impairments will arise, which can largely influence the 
performance of the wireless system. Many publications, 
e.g., [1], show that the performance of OFDM systems is 
severely degraded by different kind of implementations 
imperfections. The influence of phase noise, I/Q imbalance, 

limited word length due to fixed point implementation, 
non-lineair power amplifiers, and DC-offset are regarded as 
the main contributors to bit-error-rate (BER) degradation. 
One commonly used measure for the aggregate severeness 
of these imperfections in system design is the errorvector- 
magnitude (EVM) [2], which basically measures the 
second moment of the error in the estimated symbols. 
Another frequently used measure is implementation loss, 
which indicates the extra signal-to-noise ratio (SNR) 
necessary to overcome the impairment and achieve the 
same BER as the non-impaired system. In order to 
unambiguously relate these measures to the final system 
performance measure BER, the error term resulting from 
all implementation deficiencies has to be a zero-mean 
complex Gaussian process. To enable good design choices 
using these error measures it is important to first 
understand how the BER of a system is influenced by these 
deficiencies and secondly to understand whether and how 
the different impairments contribute to these error 
measures. This paper regards the first issue, which is unto 
now not treated for MIMO systems, and hereto studies the 
probability of error of a system experiencing TX and RX 
imperfections. These impairments are here modeled as 
additive noise sources and will be further referred to as 
additive impairment (AI). Section 2 derives the system 
model for a multiple antenna system applying OFDM, 
which experiences both TX and RX AI. The probability of 
error for such systems in fading channels is derived in 
Section 3, which shows there is a difference between the 
influence of TX and RX AI. Section 4 then provides 
numerical results, which are compared with results from 
Monte-Carlo simulations. Finally, conclusions are drawn in 
Section 5. 
 

II. MIMO OFDM SYSTEM MODEL 
 

Consider a MIMO OFDM system with Nt TX and Nr 
RX antennas, denoted here as a Nt × Nr system. Figure1 
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Figure 1: MIMO OFDM baseband system model with 

additive TX and RX impairments. 
 
depicts the baseband model of such a system. Let us define 
the MIMO OFDM vector to be transmitted during a symbol 
period as ( )110 ...,,ˆ −=

cNsssvecs , where sn denotes the Nt 
× 1 frequency domain MIMO transmit vector for the nth 
subcarrier and Nc represents the number of subcarriers. 
This vector is transformed to the time domain using the 
inverse discrete Fourier transform (IDFT). A cyclic prefix 
(CP) is added to the signal, which adds the last Nt Ng 
elements û  on top of û . We assume here that the CP is at 
least equal to the channel impulse response (CIR) length, 
avoiding inter-symbol-interference (ISI). It is, additionally, 
assumed that the average total TX power is divided among 
the TX antennas, such that the covariance matrix of 

Is s
2ˆ σ= . The signal is then transmitted through the quasi-

static multipath channel C. The average channel attenuation 
is assumed to be 1. At the RX the CP is removed (Rmv 
CP), and the received signal ŷ is converted to the 
frequency domain using the DFT. This yields 

 n̂  ˆ  )ˆ  ŝ( Ĥ  x̂ rt +++= ηη    (1) 

where Ĥ  is the NcNr × NcNt channel matrix, which is 
block diagonal since the time domain channel matrix C is 
block circulant [3]. The nth Nr × Nt block diagonal element 
of Ĥ  is Hn, the Nr × Nt MIMO channel of the nth 
subcarrier. ˆn represents the frequency-domain noise, with 
i.i.d. zero-mean, complex Gaussian elements and v̂  
denotes its time-domain equivalent. The TX and RX 
impairments are modeled by the additive terms tˆ η  

and rˆ  η , respectively, which are the frequency-domain 

equivalents of tˆ ε  and rˆ  ε   in  Fig. 1. Since the channel is 
block orthogonal, the MIMO processing can be applied per 
subcarrier, yielding the NcNt × 1 estimate s~  of the 
transmitted symbol vector ŝ . Here we regard a zero-
forcing (ZF) receiver, which basically multiplies the 
received signal x̂  with the pseudo-inverse of the 

channelmatrix Ĥ , which is given by 
.Ĥ)ĤĤ( = Ĥ H-1H†
 

After ZF-processing the estimate of the transmitted symbol 
vector is given by 

 )n̂  ˆ ( Ĥ    ŝ  x̂Ĥ  s~ r
†

t
† +++== ηη          (2) 

Note that for the ZF receiver to work Nr≥Nt. Furthermore, 
knowledge about Ĥ  is necessary at the RX. This is 
generally achieved using pilot-aided channel estimation. 
For simplicity, however, Ĥ  is here assumed to be 
perfectly known at the RX. 
 

III. PROBABILITY OF ERROR 
 

The SNR for the ntth branch and the nth subcarrier, 
affected by a given channel, is now given by 
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where it is assumed that tη̂  and rη̂  are zero-mean 
complex Gaussian distributed and that their covariance 
matrices are given by It

2σ  and Ir
2σ , respectively. 

Additionally, we assume that the different noise processes 
are independent. [A]mm denotes the mth diagonal element 
of matrix A. Furthermore, nρ  denotes the SNR for a 
system without system imperfections, i.e., only impaired by 
additive Gaussian receiver noise. 22 / tst σσρ =  and 

22 / rstr N σσρ =  are the SNR for a system only impaired 
by TX or RX AI, respectively. 
The symbol error rate (SER) for the ntth branch and nth 
subcarrier of an uncoded system is then found by [4] 
 

( ) ( ) ρρρ dpPP Mee ∫
∞

=
0 ,    (4) 

 
where the ( )ρMeP ,  denotes the approximation of the SER 

for a M-QAM constellation and is given by ( )bpaQ . In 

this expression )M1/ - 4(1  a =  and 1) - 3/(M  b = . 

The average SER is now found by averaging eP  over the 
different subcarriers and branches. The average BER is 
then found by dividing the SER by log2(M) . When there 
is no fading and the MIMO channels are perfectly 
orthogonal, it is easily seen that r

-1H I/N  )ĤĤ( = . 
In that case the RX noise and AI contribute Nr times less 
than the TX AI to the total noise in the SNR expression. 
For this non-fading case the probability of symbol error is 
then easily found by substituting 
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into ( )ρeMP  
Since it is clear from (3) that the influence of TX and RX 
AI on the SNR is different, we regard two cases for the 
fading channel: a case with solely TX AI and one with only 
RX AI. The MIMO channel elements are i.i.d. according to 
CN(0, 1), also known as Rayleigh fading. 

First we regard the case of RX AI and additive 
receiver noise. This could be the case of a downlink 
transmission in which the base station is of high quality and 
the additive impairment of the user terminal is dominant. 
The SNR RXρ  for the ntth branch and nth subcarrier in (3) 
is then given by 
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It was shown by Kiessling et al. in [5], that _RX is 
chisquared distributed with 1)N- 2(N  2P tr +=  degrees 
of freedom. Its pdf is given by 
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where 0ρ  is the average SNR, given by 
nr

nr
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ρρ
+

1
.  

To derive a closed form expression for (4), we use an 
alternative representation for the Gaussian Q-function [6, 
p.71]. By substituting this expression and (7) into (4), 
working out one integral and by change of integration 
variable, we find that the probability of symbol error is 
given by 
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 and 12 F  denotes the 

hypergeometric function. 
In the case of TX AI and additive receiver noise, 

which could be an uplink scenario, the SNR TXρ  is given 
by 
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where, again, fρ  is distributed according to a chi-squared 
distribution with 2P degrees of freedom. The probability of 
error is then computed according to 
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No general closed form expression for (10) was found. 
However, for the special cases of low and high SNR nρ  
results were found. These values can serve as bounds on 
the performance. For low nρ , the white Gaussian receiver 

noise will be dominant in the SNR term TXρ , which then 
is well approximated 
as ). n]n)H[(H/(N tt

-1
n

H
n tnTX ρρ ≈   It is clear that 

TXρ  has a chi-squared distribution with 2P degrees of 
freedom in this SNR region. Using the findings of Section 
3.1, we find that the probability of symbol error then is 
given by (8), where 0ρ  now equals tn /Nρ . For high nρ , 
the TX AI is dominant in the SNR term, which can be 
approximated as tTX ρρ ≈ . It is easy to see that the SER 

is then given by )paQ( tρ . 
 

IV. NUMERICAL RESULTS 
 

In this section results from the SER expressions 
derived in the previous section are first compared with 
results from Monte-Carlo simulations. As a test case, a 
MIMO extension of the IEEE 802.11a WLAN standard [7] 
was studied. The applied parameters are: modulation is 64 
QAM, bandwidth is 20 MHz, number of subcarriers Nc = 
64, number of carrier used for data transmission is 48, CP 
length Ng = 16 samples, coding rate is 1. Note that we 
applied an SNR correction to take into account the loss in 
signal power by the zero-carriers and CP. Figure 2 shows 
the results for a 2×4 system experiencing an additive RX 
impairment, additive white Gaussian receiver noise and a 
Rayleigh faded channel. It is obvious from Fig. 2 that there 
is close agreement between the theoretical and simulation 
results. 
 

 
 

Figure 2: BER for a 2×4 system with RX AI. Theoretical 
results are depicted with lines and the simulations results  

by markers. 
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In Fig. 3 we depict results for a 2×2 system 
experiencing TX AI. It is clear that there is good agreement 
between the results from the Monte-Carlo simulations and 
the theoretical results of (10). Also, the SER in the lower 
SNR region is well predicted by the lower bound and the 
error floors agree well with the bounds for high SNR 
values. 
 
 

 
 
Figure 3: BER for a 2×2 system with TX AI. Simulations 
results are depicted by markers and the theoretical curves 

(10) are given by solid lines. 
 
Finally, Fig. 4 shows theoretical results for systems 
impaired by either TX or RX AI, where the variance of the 
AI terms is equal for both case, i.e., 100/2

sσ . It can be 
concluded that the BER floor introduced by the TX AI does 
not depend on the number of RX antennas, while it does for 
the case of RX AI. For a 2×2 setup the influence of the TX 
AI is greater than that of RX AI, while this is the other way 
round for the case with 4 and 8 RX branches. 
 

V. CONCLUSIONS  
 

Expressions for the probability of error of an uncoded 
zero-forcing based MIMO OFDM system with additive TX 
and RX impairments are derived. Results are given for 
uncorrelated non-fading as well as Rayleigh fading 
environments. For the latter case it is shown that the error 
floor in the case of RX impairments depends on the number 
of RX antennas, while this is not the case for the TX 
impairments. The results can serve as a tool for system 
designers to derive boundaries on the allowed TX and RX 
impairments to achieve a certain system performance. 
Furthermore, the results can be used to relate EVM to BER 
for MIMO systems, under the assumption that the total 
error term is zero-mean Gaussian distributed. Future 
research will include the mapping of different radio system 
impairments on the additive TX/RX noise model and the 
investigation of the influence of multiplicative error terms. 
 
 

 
Figure 4: BER for a 2×2, 2×4 and 2×8 system impaired by 

TX AI or RX AI. Variance of error term is constant. 
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