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Abstract – This paper consist in a comparative study 
between some differential motion estimation methods 
that could be applied in the case of medical diagnosis 
by using motion information in image sequences. 
The studied algorithms could be applied in the case 
of the diagnosis of heart diseases, thyroid nodular 
diseases, arteriosclerosis and other diseases that 
imply the uses of image sequences. The paper aim to 
underline some advantages and disadvantages of 
several differential motion estimation methods in 
order to allow to ease choose a certain motion 
estimation method for a certain application. The 
studied methods will be tested on MRI (Magnetic 
Resonance Imaging) images but the methods are not 
limited only to this kind of data. 
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I. INTRODUCTION 
 

The motion information is uses more and more in 
medical diagnosis. The analysis of temporal image 
sequences gives access to quantitative parameters of 
the organ’s physiology and of their functioning [9]. 
This dynamic character is fundamental in medicine 
and particularly in the cardiovascular domain because 
the cardiovascular affections represent one of the 
principal causes of mortality in the industrialized 
countries [14]. To prevent or to diagnose these causes, 
there exist many methods based on the medical image 
processing and analysis. These images could be 
acquired by using different complementary methods 
as: X-rays (computer tomography CT, classical 
radiographies etc), ultrasounds (US imaging), 
magnetic resonance (MR imaging) or positron 
emission (PET positron emission tomography). There 
also are combined acquisition methods and data fusion 
methods, in order to obtain more complex information 
regarding the patient [15]. 

As it was mentioned above, the dynamic character 
is fundamental in the cardiovascular domain. For 
example, the motion estimation and analysis could 
offer information about arterial pulsatility and about 
the elasticity of the blood vessels. In the case of 
arteriosclerosis or a stenosis, the biomechanical 
properties of the arterial vessel are affected. This 
affection has a direct effect on local elasticity and thus 
on the hemodynamic behavior of the blood vessel. 
The worst consequence of a vascular stenosis is the 
infarcts. This affection determines the necrosis of 
cardiac cells that could determine, depending on its 
gravity, the infarct [3]. 

Until now, the using of image sequences to 
diagnose the cardiovascular diseases had a subjective 
character, the decision of the doctor depending on its 
experience in analyzing the images visualized on the 
screen of the acquisition tool. The objective 
information accessible to the doctor is obtained by 
measuring some electric parameters of the heart that 
are transformed into data concerning the cardiac cycle, 
useful for the doctors [10]. 
   We are proposing in this paper to obtain some 
objective quantitative parameters extracted from 
image sequences that could be represented in an easy 
to use and interpret way for doctors. These parameters 
will be extracted by applying some motion estimation 
methods to medical image sequences. The most used 
methods could be divided in two great classes [8]: 
• deterministic methods; 
• stochastic methods. 
   In the class of stochastic methods, the most used are 
the Monte-Carlo type methods, Metropolis and Gibbs 
methods. These methods had the advantage that allow 
very precise results, but with a very high 
computational cost. The algorithms could have a 
computational time about hours, in the case of 
temporal three-dimensional image sequences. This is 
the reason why, in practice, it is preferred to use 
deterministic methods. These methods, even they not 
offer a high precision, they have a computational time 
that allow a real-time implementation [1]. 
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   Among the deterministic methods, the most used are 
the differential methods and the block-matching 
methods with their derivates [2]. The differential 
methods have the advantage of a small computational 
time, but they have the disadvantage that are limited to 
estimate only small displacements (2-3 pixels) 
because of the limited possibilities to numerically 
implement the finite differences in the computation of 
partial derivatives in this methods. The block 
matching methods have the advantage that are not 
limited to small displacements, but the computational 
time exponentially increases with the maximal 
displacement that should be estimated. In addition, 
these methods are not taking into account the motion 
discontinuity in the movement of the objects [12]. 
   
 

II. MOTION ESTIMATION METHODS 
 

The images usually represent the projection of the 
real 3D scenes in the image plane. This is the reason 
why the observed motion (or the apparent motion) in a 
temporal image sequence represents the projection of 
the 3D motion in the image plane and it could be 
perceived as a changing of the spatial distribution of 
the intensity. The motion observed starting from the 
changing of the spatial distribution of the intensity 
represents the apparent motion or the optical flow and 
is usually different form the real motion [5].  

The aim of the motion estimation methods is to 
estimate the motion field starting from a temporal 
image sequence with a content that varies during the 
time.  

One of the hypotheses that have to be made in 
almost all the motion estimation methods, in order to 
can estimate the motion starting from the observed or 
apparent motion, is that the image intensity is constant 
during the movement or is changing in a predictable 
way [6]. This hypothesis of intensity preservation 
could be expressed through the so-called displaced 
frame difference (DFD) equation: 

 
 ))(()()( 1 pdppp −−= −tt IIDFD             (1) 
 

where p=(x,y) is the position of a pixel of the 
image, It and It-1 are the intensity images at t and t-1 
instants and d(p)=(dx(p), dy(p)) is the displacement of 
the pixel p. Almost all the motion estimation methods 
are based on the minimization, one way or other, of 
the DFD equation. 

The most used methods could be divided in two 
great classes [13], [16]: 
• deterministic methods; 
• stochastic methods. 
   The most used stochastic methods are the Monte-
Carlo type methods, Metropolis and Gibbs methods. 
These methods had the advantage that allow very 
precise results, but with a very high computational 
cost. The algorithms could have a computational time 
about hours, in the case of temporal three-dimensional 

image sequences [6]. This is the reason why, in 
practice, it is preferred to use deterministic methods. 
These methods, even they not offer a high precision, 
they have a computational time that allow a real-time 
implementation [5]. 
   The most used deterministic methods are the 
differential methods and the block-matching methods 
with their derivates [2], [5], [13]. The block matching 
methods have the advantage that they are not limited 
to small displacements, they are very intuitive and 
thus very ease to be hardware implemented but the 
computational time exponentially increases with the 
maximal displacement that should be estimated. The 
fact that these methods are not taking into accounts 
the motion discontinuity in the movement of the 
objects is another disadvantage of the block matching 
methods [2], [13]. 
 
 

III. DIFFERENTIAL MOTION ESTIMATION 
METHODS 

 
The hypothesis of intensity preservation expressed 

by the DFD equation (1) could be rewritten as: 
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where x and y vary along the motion trajectory. 

Under the hyphotesis of spatio-temporal 
differentiability of the intensity and using the known 
differentiation rules [4], we obtain: 
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where tos denotes the terms of superior orders. 
Replacing this development in the DFD equation and 
neglecting the terms of superior orders, we obtain:
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where tos denotes the terms of superior orders. 
Replacing this development in the DFD equation and 
neglecting the terms of superior orders, we obtain: 
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Dividing by the time distance between images 
(time sampling distance) we obtain the so-called 
“optical flow equation” OFE [4], [11]:            (5) 
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where vx(x,y,t)=dx/∆t, vy(x,y,t)=dy/∆t are the two 
velocity compenents. This OFE could be rewritten as: 

I  x·vx+ I  y ·vy+ I  t=0, 
 

or:                     (6) 

 
0, =+∇

dt
dII v 

               
where  

 
( )yx , II

y
I

x
II =








∂
∂

∂
∂

=∇   ,
   is the spatial gradient 

with the two components
 

x
II x

∂
∂

=  and 
y
II y

∂
∂

= , 

t
II t

∂
∂

=  is the temporal gradient and ⋅⋅   ,  represents 

the scalar product between two variables.  
The differential methods have the advantage of a 

small computational time, but they have the 
disadvantage that are limited to estimate only small 
displacements (2-3 pixels) because of the limited 
possibilities to numerically implement the finite 
differences in the computation of partial derivatives in 
this methods. 

As it can be noticed, the OFE is not sufficient to 
uniquely determine the motion field because the OFE 
represent only one equation with two unknowns (vx 
and vy) for each pixel. In order to completely 
determine the motion field it has to be introduced 
supplementary constraints. 

In the case of the Horn and Schunck (HS) method 
[4], the additional constraint is the uniformity 
constraint that could be expressed by the following 
term that has to be minimized with the OFE:           (7) 
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In the case of the Lucas and Kanade (LS) method 
[7], the same uniformity constraint (7) is applied to 
images but in a local manner. So, if in the case of the 
Horn and Schunck method a global uniformity of the 
motion field is imposed to the hole image, in the case 
of the Lucas and Kanade algorithm a local uniformity 
is imposed. This local application of the uniformity 
constraint allow to better preserve the motion 
discontinuities, even if not as it has to be preserved. 

In the case of the mean-field annealing (MFA) 
method [17], a composed energy has to be minimised: 

U(I,d,l)= Ua(I,d) + αd ·Udl(d,l) + αl ·Ul(l)            (8) 
where: Ua(I,d) is the energy attached to the data; 

 Udl(d,l) is the regularization energy for the 
displacement (or motion) field; 

Ul(l) is the regularization energy for the line field l. 
As an energy attached to the data in (8) it can be 

used the following forms for this term [18]:             (9) 
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As regularization energy for the displacement (or 
motion) field in (8) it can be used the following forms 
for this term:                                                            (11) 
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where r are the pixels from the neighborhood Np of 
the current pixel p. 

As regularization energy for the line field l in (8) it 
can be used the following forms for this term:     

( )∑ ⋅+⋅=
p

p p l VHU VHl αα)(                       (12)                              

where αH and αV are the corresponding weighting 
terms of the horizontal and vertical line field. 

The line field l is introduced in order to take into 
account motion discontinuities. We can use an explicit 
binary “line process” that will mark the 
discontinuities, as in figure 1 [18]. 

 

lx=H=1 
ly=V=1 

lx=H=0 

 
Figure 1. Illustration of the explicit binary line process. 
 
Thus, an example of a composed energy that could 

be used in the case of the MFA method is [17]: 
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where l=( lx,ly)=(H,V) is the line process (or line 
field), with the two components: H (horizontal) and V 
(vertical), σ1 and σ2 are the standard deviations of the 
displacement field and line field, respectively,  
whereas αd, αH and αV, are weighting coefficients of 
motion field and line field, respectively. 

The simplest application of this algorithm implies 
the computation of the mean of each variable in a 4-
neighborhood. 
 

 
IV. EXPERIMENTAL RESULTS 

 
In this Section, we present some comparative results, 

in terms of precision and computational time, between 
the Horn & Schunck (HS) method, the Lucas & 
Kanade (LS) method and the MFA algorithm. 

In figure 2, the experimental results on a real MRI 
sequence (of 25 images) are presented. This sequence 
is obtained using a MRI imaging method of a human 
heart. 
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Figure 2. Results in the case of IRM sequence. 

In figure 2 (a) the first image of the real sequence 
(MRI) is presented. In figure 2 (b) the estimated 
motion field is illustrated. The motion field was 
estimated using the MFA algorithm. 

In table 1, the comparative numerical results are 
presented, for HS, LS and MFA method, in the case of 
the MRI sequence. 

TABLE 1. COMPARATIVE RESULTS FOR MRI SEQUENCE. 

Estimation 
method Mean Value Standard 

Deviation 

HS -0.14 1.17 

LS 0.11 1.14 

MFA -0.103 1.02 
 

As we can observe from the above results, the most 
accurate results are obtained with the MFA estimation 
method.  

In terms of computational time, the MFA method’s 
results are comparable to those given by the HS 
algorithm. 

TABLE 2. COMPARATIVE COMPUTATIONAL TIME. 

 HS LS MFA 

Computational 
time [s] 0.5 0.7 0.8 

 
The computational time could be further reduced 

for all these algorithms by using multi-resolution 
techniques. 

 
V. CONCLUSIONS 

 
In this paper we presented a comparative study 

between three differential motion estimation methods 
that could be applied in the case of medical diagnosis 
by using motion information in image sequences. The 
studied algorithms could be applied in the case of the 
diagnosis of heart diseases, thyroid nodular diseases, 
arteriosclerosis and other diseases that imply the uses 
of image sequences. The paper underlined some 
advantages and disadvantages of the three motion 
estimation methods in order to allow to ease choose a 
certain motion estimation method for a certain 
application. The studied methods were tested on MRI 
(Magnetic Resonance Imaging) images but the 
methods are not limited only to this kind of data. 
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