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Abstract – This paper deals with fuzzy statistical image 
segmentation. We introduce a new hierarchical 
Markovian fuzzy hidden field model, which extends to the 
fuzzy case the classical Pérez and Heitz hard model. Two 
fuzzy statistical segmentation methods related with the 
model proposed are defined in this paper and we show via 
simulations that they are competitive with, in some cases 
than, the classical Maximum Posterior Mode (MPM) 
based methods. Furthermore, they are faster, which will 
should facilitate extensions to more than two hard classes 
in future work. In addition, the model proposed is 
applicable to the multiscale segmentation and 
multiresolution images fusion problems. 
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1. INTRODUCTION 
 
This paper deals with fuzzy statistical image segmentation. 
We adopt the recent Hidden Fuzzy Markov Random Fields 
(HFMRF) model considered in [12, 13], which 
simultaneously models the imprecision of membership of 
pixels to a given class, a fuzzy aspect [3, 10, 14] , and the 
uncertainty of their belonging to a given class, a 
probabilistic aspect. Such a mixed approach differs from 
both a purely fuzzy approach [10], and from purely 
probabilistic Markov Field Model based approach [2, 6, 7, 
9]. Let us briefly specify the interest of fuzzy segmentation 
in some real situations. Let us consider the problem of 
segmenting a satellite image into two classes: "houses" and 
"trees". There may be some pixels with only houses and 
others with only trees, but there may also be many pixels, 
as in suburbs, in which houses and trees are simultaneously 
present. Thus we have two hard classes, say 0 and 1, and a 
fuzzy class specified by ε∈]0,1[ , which can be seen as the 
proportion of the area of class 1. Now, if we wish to use 
some statistical method we have to introduce a probability 
measure p on [0,1]. According to one's intuition, p[0] and 

p[1] can be strictly positive, but any element of ]0,1[ can 
also occur. This is modelled by considering that p is 
defined with a density h with respect to the measure ν= δ0 

+ δ1 + µ, which includes a "hard" component (Dirac 

functions δ0 , δ1 on 0,1 { }), and a "fuzzy" one, which is 

the Lebesgue measure µ on 0,1 ] [. Such modelling was 
first introduced in local segmentation methods [3, 4] and 
then generalized to Markovian methods [10, 11]. Fuzzy 
segmentation methods presented in [10,11] are quite 
efficient, although the computational burdin can be 
prohibitive. Thus the aim of the present paper is to propose 
faster methods. Returning to the classical hard case, it is 
well known that simulated annealing [7] is time expensive 
and the Iterated Conditional Mode, ICM [2], which is a fast 
approximation of MAP, is often used. The problem is that 
ICM is sensitive to the initialisation and, when poorly 
initialized, can give poor results. To remedy this, Perez and 
Heitz proposed a hierarchical structure, which is a set of 
compatible Markovian fields [11]. Roughly speaking, the 
solution given with ICM at a given scale serves to initialise 
ICM at the finest scale. In this work we adapt the Perez and 
Heitz model to the fuzzy case and show, via simulation, its 
interest in the fuzzy segmentation. The organization of the 
paper is as follows: In the next section we shortly recall 
modelling by Hidden Fuzzy Markov Fields, as proposed in 
[12, 13]. Section three is devoted to the new hierarchical 
model we propose and some related segmentation methods 
are specified in section four. Section five is devoted to the 
numerical results obtained and section six contains the 
conclusion.   
 
A. Distribution X 
With V a neighbourhood and N the number of pixels, we 
consider a function h:[0,1]N → R of the following form:  
 

h(x) = ce−U( x ) (2.1) 
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Here U , called "energy", is a sum of functions defined on 
cliques, a clique being either a singleton or a set of 
neighbour pixels with respect to V . We consider the 
stationary case, i.e., that the functions defining U depend 
only on the shape of cliques and do not depend on their 
position in the set of 
pixels. Thus, if C is a clique of a given shape and n 
= Card(C), the associated function ϕC is a function from 
Ωn = [0,1]n into R. Considering the measure 
 

ν= δ0 + δ1 + µ (2.2) 
 
where δ0, δ1 are the Dirac measures on {0,1}, and µ is the 
Lebesgue measure on [0,1], we assume that h defined by 
(2.1) is a density of PX with respect to ν⊗N . Thus one can 
classically show that X is a Markovian field.  
 
B. Distribution of Y conditional to X 
We assume that: 
(i) The random variables (Ys ) are independent 
conditionally on X ; 
(ii) The distribution of each Ys conditional to X is equal to 
its distribution conditional to Xs . Distributions of Y 
conditional to X are then defined by distributions of Ys 

conditional to Xs . Denoting by N(m, σ2 ) the normal 
distribution of mean m and variance σ2, we take for the 
distribution of Ys conditional to Xs = xs ∈[0,1]: 
 

N((1− xs )m0 + xsm1,(1− xs ) σ0 2 + xs σ1 2 ) (2.3) 
 
Thus the parameters m0 ,m1, σ0 2 , σ1 2 define all 
distributions of Y conditional to X . Let ψxs 

be the Gaussian density defined by (2.3). The density ψ of 
the distribution of (X,Y) with respect to νN ⊗ µN ( ν being 

the measure on [0,1] defined by (2), µ the Lebesgue 
measure on R and N the number of pixels) is then given by 

ψ(x, y) = ce−U f ( x ) ψxs (ys ) s∈S ∏ = ce−Wy ( x ) (2.4) 
 
with Wy (x) = Uf (x) + Vx (y) and  
Vx (y) = Log ψxs (ys ) s∈S ∑ . 
 

2. HIDDEN FUZZY MARKOV FIELDS 
 

In this section, we briefly recall the model presented in [12, 

13]. We consider two random fields X = Xs ( )s∈S and Y 

= Ys ( )s∈S, with each Xs taking its values in Ωf = [0,1] and 
each Ys taking its values in R. As usual, the probabilistic 
link between X and Y is modelled by P( X,Y ) , which is the 
distribution of (X,Y) and which is defined by the 
distribution of X and the distributions of Y conditional to X 
. 
 

C. A posteriori distribution of X 
The density of the a posteriori distribution of X (i.e., 
conditional to Y = y ) with respect to νN i s thus given by  

ψy (x) = ke−Wy ( x ) ke−Wy ( x ) [0,1]N ∫ d νN (x) (2.5) 
 
which can be written as 

ψy (x) = k(y)e−Wy ( x ) = k(y)e−(U f ( x )+Vx ( y)) (2.6) 
 

As in the case of hard Markovian fields, the Markovian 
nature of the posterior distribution of X is thus preserved 
and one can use the Gibbs sampler in order to simulate its 
realizations. 
 

3. HIERARCHICAL FUZZY MARKOV FIELDS 
 
We assume that Card(S) = 4n and consider 
sequence the classical pyramid sequence in which each 
"father" has four "so ns", which form, at the lower lever, a 
block of four elements. So, there are n +1 scales : Sn = S, 
Sn−1 obtained from Sn and having 4n−1 elements, ..., Si 

having 4i elements, .., and S0, which is the top of the 
pyramid, having 40 = 1 element. Then we consider n +1 
random fields X0 , ..., Xn , with Xi = (Xs i )s∈Si , such that each 
variable Xs i takes its values in [0,1]. Thus the realizations 
of Xi can be seen as particular realizations of Xi+1 in the 
following sense :  
 

[Xs i = xs i ]⇔[ for all t sons of s Xt i+1 = xti+1] (3.1) 
 
Let us assume that we dispose of some iterative 
segmentation method ˆs, like ICM, and the drawback is that 
ˆs is sensitive to the initialization. Roughly speaking, the 
idea of Pérez and Heitz is then to use the result obtained 
with ˆs at the scale I in order to initialize ˆs , using (3.1), at 
the scale i +1. Subject to some compatibility of Markovian 
structures on different scales, the method they proposed 
gives good results in the classical hard case. We present 
below an adaptation of the hierarchical hidden Markovian 
structure of Perez and Heitz to the fuzzy model. We place 
ourselves at the base of the pyramid and consider the 
markovianity relative to the four nearest neighbours. The 
energy is then defined with functions ϕC , where C is either 
a singleton or a set {s,t} of neighbours. They will be 
assumed null on singletons, and  
 

ϕ{s, t}(xs , xt ) = − α if xs = xt α if xs ≠ xt (3.2) 
 
for (xs , xt ) ∈{0,1}2 , ϕ{s, t}(xs , xt ) = − β(1− 2 xs − xt ) (3.3) 
for (xs , xt ) ∈[0,1]2 −{0,1}2  
The fuzzy class field is then noise corrupted as specified in 
section 2.2 above. Now, let us consider a scale i. We will 
define an energy ϕi "compatible" with the energy defined 
by (3.2), (3.3). Each pixel si of Si contains pi = 2i+1(2i −1) 
binary cliques of the basic pixels. According to (3.2), (3.3) 
we thus have for singleton cliques  
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ϕI {si }(xsi ) = − pi α if xsi ∈{0,1} − pi β if xsi ∈]0,1[ (3.4) 
 
On the other hand, there are qi = 2i basic binary cliques 
touching si and ti for a given binary clique {si ,ti} of Si . 
Associated with binary cliques, the functions ϕi are 
 
ϕI {si , t i }(xsi , xt i ) = −qi α if xsi = xt I qi α if xsi ≠ xt I (3.5) 
 
for (xsi , xt i ) ∈{0,1},  
 

ϕI {si , t i }(xsi , xt i ) = −qi β(1− 2 xsi − xt i ) (3.6) 
 
for (xsi , xt i ) ∈[0,1]2 −{0,1}2 and the noise inferred at the 
scale i is given by fx si 

(ysi ) = fxs (ys ) s∈si ∏ (3.7) 
 
Finally, (3.4)-(3.7) define a set, indexed to scales, of hidden 
Markov fuzzy fields. 
 

4. CLASSICAL AND HIERARCHICAL FUZZY 
MARKOV FIELDS BASED SEGMENTATIONS 

 
We recall in this section two classical Fuzzy Hidden 
Markov Field based segmentation method and two new 
Hierarchical Fuzzy Hidden Markov Field based ones. 
 
A. Fuzzy MPM methods 
According to the model specified in the section 2, 
simulations of the fuzzy field X conditional to Y are 
possible, and thus one can estimate the posterior marginal 
of X . Once the distribution of Xs conditional to Y = y , 
given by a density hs with respect to the measure ν= δ0 

+ δ1 + µ, is known the following two methods can be 
considered:  
 

1) The Fuzzy MPM1 (FMPM1) method is defined with  

ˆx = FMPM1(y) [ ]⇔ ∀s ∈S hs ( ˆxs ) = sup t∈[0,1] hs (t) (4.1) 
 
2) The Fuzzy MPM2 (FMPM2) is defined with ˆx 

= FMPM2(y) [ ]⇔ ∀s ∈S, ˆxs = 0 if hs (0) ≥ sup(hs 

(1),1− hs (0) − hs (1)) 1 if hs (1) ≥ sup(hs (0),1− hs (0) − hs 

(1)) argmax t∈]0,1[hs (t) otherwise  (4.2) FMPM1 and 
FMPM2 give satisfying results, although the visual effects 
of the segmented images by the both methods can be 
different. 
 
B. Hierarchical Fuzzy ICM methods First, let us specify 
how Fuzzy ICM1 (FICM1) and Fuzzy ICM2 (FICM2) run. 
According to section 2, the distribution of X conditional to 
Y = y is a Markov distribution and thus the distribution of 
each Xs conditional on (Xt1, Xt2 , Xt3 , Xt4 ), where t1,t2 ,t3,t4 are 
neighbours of s , is computable. In FICM1 we scan the set 
of pixels and, at each pixel s , we replace the current fuzzy 
value by that which maximises the density, with respect to 

ν= δ0 + δ1 + µ, of the distribution of Xs conditional to (Xt1 , 
Xt2 , Xt3 , Xt4 ) = (xt1 , xt2 , xt3 , xt4 ),where xt1 , xt2 , xt3 , xt4 

are the current values of neighbours of s . Thus FICM1 
runs like the classical hard ICM, with the difference that 
one maximises a density with respect to ν= δ0 + δ1 

+ µ instead of maximizing a finite probability. In the 
FICM2 we still scan the set of pixels and, at each pixel s , 
we consider the density, with respect to ν= δ0 + δ1 + µ, of 
the distribution of Xs conditional to (Xt1, Xt2, Xt3, Xt4) = (xt1, 
xt2, xt3, xt4) = xVs. Denoting this density by hVss , the new 
fuzzy value of s is chosen using (4.2), in which hs is 
replaced by hVs s . The Hierarchical FICM1 and Hierarchical 
FICM2 (HFICM1 and HFICM2 respectively) methods are 
then obtained from FICM1 and FICM2 using the 
hierarchical structure in the following way :  
(i) use FICM1 (respectively, FICM2) at the scale r , which 
is the top of the pyramid ( r = n ), or near the top.  
(ii) initialize FICM1 (respectively, FICM2) at the scale i −1 
with the segmentation found at the scale i . 
(iii) obtain the final segmentation at the scale i = 0 (the 
base of the pyramid)  
 

5. SIMULATION RESULTS 
 

We present in this section three series of results concerning 
three fuzzy images : one realization of a Fuzzy Markov 
Random Field, and two hand written ones. Each of them is 
corrupted by a Gaussian noise and then segmented with the 
four methods MPM1, MPM2, HFICM1, and HFICM2. The 
performance of each is evaluated visually and with the 
error rate τ, which is defined by  

τ= 1 N ˆxs − xs s∈S ∑ (5.1) 
 
The results are presented in Figures 1 and 2. The most 
striking impression is that the hierarchical methods are 
visually better behaved than the MPM methods. This is true 
in the fuzzy Markov Field realization case as well as in the 
hand written fuzzy image case. Other results presented in 
[1] confirm these impressions. On the other hand, the 
visual aspects of different methods can be quite different. 
This can lead to the conclusion that each method can be 
useful in some particular situation. For instance, HFICM 1 
seems to better restore the hard classes, while HFICM2 
better renders the fuzzy classes. Thus, when we are mainly 
interested in detecting spots with hard classes, HFICM1 is 
better suited, but HFICM2 should be chosen when we are 
interested in fuzzy spots. 
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Fuzzy Markov Field               Noisy field. Noise 
                                                variances equal to 1, 
                                                means 0 and 4. 

 
Segmentation with          Segmentation with 
HFICM1, τ= 11,6%        HFICM2, τ= 12,2% 
 

 
Segmentation with                    Segmentation with 
MPM1, τ= 16,9%                     MPM2, τ= 14,4% 
 

Figure 1 
 

6. REFERENCES 
 

[1] L. Amoura, Modèle markovien pyramidal flou et 
segmentation statistique d'images, Ph. D Dissertation, 
Université Pierre et Marie Curie, Paris, February, 3, 1998. 
[2] J. Besag, On the statistical analysis of dirty pictures, 
Journal of the Royal Statistical Society, Series B, 48, 1986, 
pp. 259-302. 
[3] J. C. Bezdek, Pattern Recognition and Fuzzy Objective 
Function Algorithm. Plenum Press, New-York, 1981. 
[4] H. Caillol, A. Hillon, and W. Pieczynski, Fuzzy random 
fields and unsupervised image segmentation, IEEE 
Transactions on Geoscience and Remote Sensing, Vol. 31, 
No 4, 1993, pp. 801-810. 
[5] H. Caillol, W. Pieczynski, and A. Hillon, Estimation of 
Fuzzy Gaussian Mixture and Unsupervised Statistical 
Image Segmentation, IEEE Transactions on Image 
Processing, Vol. 6, No. 3, 1997. 
[6] R. Chellapa and A. Jain (ed.), Markov 
Random Fields, Academic Press, 1993. 
[7] S. Geman and D. Geman, Stochastic relaxation, Gibbs 
distributions and the Bayesian restoration of images, IEEE 
Transactions on PAMI, Vol. 6, No. 6, 1984, pp.721-741. 
[8] J. T. Kent and K. V. Mardia, Spatial Classification 
Using fuzzy Membership Models, IEEE Transaction on 
PAMI,Vol. 10, No. 5, 1988, pp. 659-671. 
[9] J. L. Marroquin, S. Mittle, and T. Poggio, Probabiliste 
solution of ill-posed problems in computational vision, 
Journal of the American 
Statistical Association, Vol.82, 1987, pp.76- 89. 
[10] W. Pedrycz, Fuzzy sets in pattern recognition: 
methodology and methods, Pattern Recognition, Vol. 23, 
No. 1/2, 1990, pp. 121-146. 
[11] P. Pérez and F. Heitz, Une approche multiéchelle à 
l'analyse d'images par champs markoviens, Traitement du 
Signal, Vol. 9, No. 6, pp. 459-472, 1992. 
[12] W. Pieczynski and J. M. Cahen, Champs de Markov 
cachés flous et segmentation d'images, Revue de Statistique 
Appliquée, Vol. 42, No 2, 1994, pp. 13-31. 

Fuzzy Markov Field realization, its noisy version, and 
segmentations with MPM1, MPM2, HFICM1, and 
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