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Abstract – The paper is aimed to identify robust predictive 
schedules able to face the effects driving the operation of 
set processes with operation time variability. It is an initial 
attempt to formalize the short-term scheduling problem 
with operational uncertainties. The use of stochastic 
programming as the modeling system is adopted, and a 
multi-objective stochastic formulation is first developed 
and extended to manage the risk of poor performances. The 
effectiveness of the approach as a decision-support tool is 
presented in a case study. 
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I. INTRODUCTION 
 
Numerous sources of uncertainty are identified with a 
direct effect on short-term decisions. Time deviations as a 
consequence of processing time variations and/or machine 
breakdowns appear as the most common and costly effects 
of disruptions encountered in this stage, making difficult 
the prediction of exact production times and rates in 
industrial processes. The degree of variability is a function 
of the process itself, but deviations from 5% upward of the 
estimated processing times are usual. The sources of 
uncertainty are considered process time variations; machine 
break-downs; transport time variations; and demand 
variations.  
The approach to minimize the effects of processing times 
uncertainty consists of introducing intermediate storage 
devices before the bottleneck processing units to maintain 
reserve material for downstream processing. This allows 
decoupling the operation of the processing units, avoiding 
the propagation of unexpected events, and allowing the 
execution of the predictive schedule without modifications. 
However, the production of reserve material is often 
expensive, inefficient, and/or technically difficult to 
maintain, and dedicated storage units could be required for 
each product or intermediate with an additional cost. 
Furthermore, if materials leaving a processing unit are 
unstable, and therefore consecutive operations must be 
performed under a zero wait (ZW) transfer policy, 
intermediate storage is not a viable solution. These 
approaches use trough estimates or simply averages of the 
processing times observed in previous runs.  

 
 

2. LITERATURE REVIEW 
 
Relatively few works incorporate information about 
uncertain operation times proactively in the decision stage.  
[2] described a mathematical programming framework and 
solution procedures for robust discrete optimization 
problems, and defined alternative min-max criteria to 
differentiate the robustness of various solutions over a 
given set of potential scenarios. Based on this framework, 
[3] focused on a single-machine scheduling environment 
with uncertain processing times represented using the 
scenario-based approach, and used the flow time as a 
performance criterion; exact branch-and-bound as well as 
heuristic algorithms were implemented to solve the 
problem. A similar proactive scheduling approach was 
developed in [4] for a two-machine flow shop environment, 
where the scenario-based and intervals representations of 
processing times were discussed, and the start to finish time 
was adopted as the performance measure. [5] presented a 
two-space genetic algorithm as a general technique 
for solving robust discrete optimization problems using a 
min-max criterion; the algorithm was applied to identify a 
schedule with the minimum worst-case start to finish time 
for a parallel machine scheduling plant with uncertain 
processing times. [6] developed a mathematical 
programming model to determine robust predictive 
schedules in a project scheduling environment with 
uncertain operation times represented with discrete 
scenarios; the robustness measure to be minimized was 
defined as the expected weighted deviation of the actual 
from the predicted start times, when only the disruption of 
one operation time was anticipated; three additional 
heuristics related to existing algorithms were also 
presented and compared with the proposed model. Using 
the same robustness criterion in the same scheduling 
environment, [7] developed and validated heuristic and 
metaheuristic procedures to allocate time buffers and 
generate a robust predictive schedule with acceptable start 
to finish time; the heuristic algorithms inserted the slack 
time in a deterministic predictive schedule with minimum 
start to finish time, keeping the assignment of resources 
fixed; a tabu search algorithm and an improvement 
heuristic were also developed to search for the best 
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insertion of time by exploiting the neighborhood solutions. 
In general, the proactive scheduling approaches proposed 
so far pursue the identification of predictive schedules with 
optimal expected performances, or schedules that guarantee 
a minimum performance with a certain probability. Simple 
production models are usually assumed (e.g., flow shop, 
single stage) and/or the main effects of the uncertainty are 
not considered in the modeling system. Therefore, critical 
situations that can arise during the execution of a predictive 
schedule due to deviations from the estimated operation 
times are not explicitly addressed, not even analyzed. For 
example, with the generation of considerable wait times the 
quality of sensitive or unstable materials can decrease and 
become even unacceptable, thus forcing the rejection of 
batches with the consequent increase of operating costs. 
Furthermore, completion times larger than those expected 
can lead to delays in the promised delivery dates, and 
hence to customer dissatisfaction. 
This chapter focuses on general multipurpose multi-stage 
batch plants with uncertain operation times, and presents a 
proactive scheduling approach based on a stochastic 
programming formulation. The underlying idea is to 
improve the robustness of the predictive schedule by taking 
into account, in the reasoning procedure itself, wait times 
and idle times that may eventually occur at execution time 
as a consequence of the uncertainty. 
 
 

2 PROBLEM FORMULATIONS 
 
The short-term scheduling problem is addressed for 
multipurpose multi-stage systems with uncertain operation 
times. The process-stage-operation hierarchy is used to 
model the data, each order has associated a production 
process, i.e., a set of activities or stages required to 
transform the input materials into products. Furthermore, 
each stage involves an ordered set of operations that must 
be executed one immediately after another and assigned to 
the same equipment unit. Based on this structured 
information, given are the set of production orders to be 
fulfilled, the set of processing stages required in each order, 
a set of units where they can be processed, the operations 
required in each stage, and the processing time of each 
operation represented by a probability distribution. 
The objective of the paper is to identify a robust predictive 
schedule. The robustness criterion for the underlying 
problem is formally defined as the expected value of a 
weighted combination of start to finish time and wait times 
generated during the execution of a predictive schedule. 
This measure balances the trade off between the need for 
high plant efficiency, evaluated in terms of start to finish 
time, and the low wait times, which account for the 
eventual effects arising due to the uncertainty. To avoid the 
generation of wait times is particularly important with 
unstable intermediate products, and when ZW transfer 
policies are applied. In addition, the reduction of idle times 
to keep reasonable plant utilization is implicitly considered 
with the minimization of the start to finish time. 

Due to the uncertain operation times, there is no sense in 
determining detailed start and end processing times for 
each operation in the predictive schedule, but only the 
minimum information required to start the production in 
the plant, i.e., the sequence, the assignment of units to 
stages, and the initial processing time of each process or 
batch. 
The following assumptions are made: 
- from the predictive schedule, the lower control level only 
requires as a guidance information related to the sequence, 
the assignment of units to stages, and the processes start 
times. Then production proceeds according to the control 
recipe, without rescheduling considerations beyond a 
simple right-shift of eventual altered operations. 
- the non-intermediate storage policy (NIS) between stages 
is assumed, that is, an intermediate product remains in the 
processing unit after its production until the unit assigned 
to the next stage is available. 
- Within a stage, all the operations must be executed 
without interruption. 
- three sorts of links are differentiated to describe temporal 
constraints between operations within a process: 
simultaneous, instant, and sequential.  
Simultaneity accounts for those operations from different 
stages that have to start and end at the same time. Instant 
requirements are defined between those operations that 
have to be produced one immediately after the other. 
Sequential links establish a relationship between the end 
time of an operation and the start time of another operation, 
i.e., they are defined between operations that have to be 
performed consecutively without immediacy requirements. 
To simulate the execution of a predictive schedule when 
operation times are uncertain, wait times are introduced at 
the end of a processing stage, or before a transfer operation, 
if the next unit is not available. To account for the 
generation of these wait times, sequential links are 
established in each process between the last operation of a 
stage (if it is not a transfer operation) and the first operation 
of the following stage, and between a transfer operation 
and the preceding one in the same stage. 
If an equipment unit is available before the time 
determined for the next batch, and idle time appears, i.e., 
processes cannot start before their start time in the 
predictive schedule  
For modeling purposes, a distinction is made between wait 
times between stages ( tsw s) due to the blockage or 
unavailability of a unit, and start wait times ( tow ) due to 
delays on the predicted processes start times. 
 
 
3 MODELING APPROACH 
 
An equation-based modeling system is considered in this 
study for the development of the proactive scheduling 
approach. Particularly, a multi-objective two-stage 
stochastic programming model is formulated to describe 
the features of the problem. This rigorous optimization 
approach is appropriate since decisions related to the 
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production sequence, assignment, and start times of each 
process must be taken to start production, before the actual 
values of operations times are revealed, whereas the 
eventual effects of the uncertainty and the efficiency of the 
system are not disclosed until the execution of the 
predictive schedule. With a two-stage stochastic modeling, 
scenarios of possible operation times are anticipated to take 
into account different outcome at the time of scheduling.  
A stochastic formulation is first presented using the 
robustness criterion defined as objective function. The 
model is next extended to explicitly manage the risk of 
obtaining highly suboptimal schedule performances. 
Uncertainty associated with operation times is represented 
indistinctly by discrete or continuous probability 
distributions. Monte Carlo sampling is then applied over 
the probability space to generate a finite set of 
representative scenarios and approximate the expectation of 
the objective function  
A two-stage stochastic mixed-integer linear programming 
(MILP) formulation is developed based on the concept of 
precedence relationship between stages introduced [8]. 
Decision variables related to the production sequence, the 
assignment of units to stages, and the processes start times 
are modeled as first-stage decisions to be taken here-and-
now, independently of the realization of the uncertainty. 
With the predictive schedule fixed in the first-stage, a 
detailed executed schedule, with the start to finish time and 
wait times generated due to deviations from the nominal 
operation times, is computed in a second stage and for each 
anticipated scenario, i.e., for each realization of processing 
times. As assumed the processes start times in the 
predictive schedule act as lower bounds in the executed 
schedules, i.e., the start time of each process in each 
scenario is constrained to be at least the start time in the 
predictive schedule. Material balances, as well as features 
such as batch mixing and splitting, can also be 
contemplated in the model, but have been excluded from 
the scope of this research in order to focus on the problem 
of the uncertainty, and to avoid additional computational 
complexities arising from the discrete or continuous -time 
representation. 
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Where: 
kω is wait time 
s
oikω wait time between stages (after operation o of process 

i in scenario k) 
s
oikω  start wait time or delay of process i in scenario k 

kmk is makespan value, start to finish time value  
To identify a robust predictive schedule the expectation 
function to be minimized is written as a sum of the 
weighted combination of makespan (mk) and wait times for 
each scenario k (eq. 1). 

Equation 2 is a first-stage constraint that establishes the 
assignment of one of the alternative equipment units u to 
each processing stage j for every process i. The binary 
variable Yiju is used for this purpose, which takes the value 
of 1 if stage j of process i is assigned to unit u, or 0 
otherwise.  
The formalism of robustness used in the previous stochastic 
model is based on the expected value of start to finish time 
and wait times over the set of anticipated scenarios. To 
avoid the identification of predictive schedules with highly 
suboptimal performances in some of the scenarios, criteria 
based on the worst-case scenario, and defined in general 
terms as absolute robustness, robust deviation and relative 
robustness criteria [8], are assessed and optimized. 
The absolute robustness criterion (ZAR) is a minimax 
criterion that attempts to determine the predictive schedule 
with simply the best of the worst performance over all the 
scenarios. The robust deviation (ZDR) and relative 
robustness (ZRR) criteria are concerned with how the 
actual system performance compares with the optimal 
performance that could have been achieved if certain 
information about the scenario realization had been 
available at scheduling time. These criteria allow, 
respectively, the identification of the schedule with the best 
worst-case deviation or the best worst-case percentage 
deviation from optimality over all the scenarios. 
 
 

4. CASE STUDY 
 

For the problem under consideration, and based on the 
concept of schedule robustness used so far in terms of start 
to finish time accounting for the efficiency of the system 
and wait times measuring the effects of the uncertainty, the 
worst-case scenario implies the scenario with a maximum 
combination of start to finish time and wait times. 
Therefore, given a predictive schedule, the absolute 
robustness measure is formally defined as the maximum 
sum of start to finish time and wait times over all the 
anticipated scenarios, expressed according to equation (3) 
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Similarly, the robust deviation and the relative robustness 
criteria are formalized as the maximum difference or ratio, 
respectively, over all the scenarios between the start to 
finish time and wait times generated in the realized 
scenario, and the start to finish time and wait times of the 
optimal schedule to be executed if the scenario had already 
been known at decision time ( *

kOF ). These criteria are 
formalized as stated in equations (4) and (5), respectively. 
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Both robust deviation and relative criteria require the 
computation of the optimal performance in each scenario 
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( *
kOF ), and hence a deterministic problem for each 

realization of processing times is to be solved. This 
deterministic model derives simply from the stochastic 
model (SCHED1) considering only one scenario with the 
corresponding operation times. When the actual scenario is 
already known at the time of scheduling, no delays in the 
processes start times are expected during the execution of 
the schedule. The minimum absolute robustness min

ARZ  

robust deviation min
DRZ  and relative robustness values 

min
RRZ can be evaluated by solving the SCHED1 model, but 

minimizing one of the alternate minimizing one of the 
alternate measures (eqs. 4, 5) instead of equation 1. 
For modeling environments that do not support minimax 
functions, the definition of these metrics is handled by 
inequality constraints. A predictive schedule with a 
minimum worst-case is identified, but some degree of 
flexibility to fix the temporal decisions exists in the second 
stage for the evaluation of those executed schedules that 
show a lower performance than the worst-case. Therefore, 
to be able to compute the proper executed schedules in the 
second stage of the solution algorithm, model SCHED1 is 
extended with the incorporation of two additional 
constraints: the worst-case formalism in terms of absolute 
robustness (eq. 3), robust deviation (eq. 4), or relative 
robustness (eq. 5). A robust predictive schedule is then 
determined, with a maximum expected combination of start 
to finish time and wait times (eq. 1), and a minimum worst-
case defined in terms of absolute robustness, robust 
deviation, or relative robustness. 
This new model (SCHED2) can be regarded as a robust 
optimization approach with preference for risk-averse 
decisions. The stochastic model SCHED1 is extended with 
the incorporation of the absolute robustness, the robust 
deviation, or the relative robustness as a measure of the risk 
of obtaining highly poor performances. 

 
 

Figure 1: Pareto curve between the expected wait times and 
expected makespan values 

 
The results obtained related to the expected sum of 
makespan and wait times, expected makespan, expected 
wait times values for the predictive schedules determined 
with the different modeling systems are presented in table 
1. The makespan and wait time values of the executed 
schedule in the nominal scenario according to each 

predictive schedule are also included (mknom and wtnom in 
the table). The decisions made using the deterministic 
formulation with nominal processing times poorly face the 
uncertainty, and overestimate the performance of the 
system.  

Schedule 2 with:   
Determi-

nistic 
approach

 
 

Schedule 1 absolute 
robustness 

(AR) 

robust 
deviation 

(DR) 

relative  
robustnes

s (RR) 
E[mk + wt] 120.4 116.2 119.3 119.2 120.5 
E[mk] 105.7 106.9 112.8 107.8 115.7 
E[wt] 14.7 9.3 6.5 11.5 4.8 
mknom 101.0 107.0 111.3 107.0 115.8 
wtnom 0.0 4.0 1.0 6.5 0.8 

 
Although the makespan and wait time values of the 
predictive schedule obtained are optimal in the nominal 
scenario, when the deterministic decisions are used to face 
the uncertainty, the expected makespan raises nearly 5% 
from the optimum one (from 101 to 105.7 TU), and the 
generation of significant wait times is expected (14.7 TU). 
On the other hand, the stochastic modeling with weight 
values fixed at 1 for both criteria in the objective function 
allows the identificationof a predictive schedule with 
expected wait times reduced nearly 37% (from 14.7 to 9.3 
TU), and with acceptable expected makespan (106.9 TU). 
Using the robust optimization approach with the minimax 
criteria, alternative predictive schedules are identified with 
reduced risk of poor performances, while still maintaining 
improved robustness with respect to the deterministic 
approach. Using the absolute robustness measure (AR), for 
example, a predictive schedule is determined with a worst-
case performance reduced by 14% (from 152.0 to 131.6 
TU), and with an expected wait time value about 56% 
lower with respect to the deterministic schedule (6.5 vs. 
14.7 TU). The reduction in expected wait times is even 
higher with the predictive schedule identified considering 
the relative robustness metric (nearly 67 %), despite the 
increase in the expected makespan and the poor 
performance in the nominal scenario. 
The predictive schedules determined using deterministic 
models for the nominal and the random scenarios show 
poorer robustness features than the predictive schedule 
identified with the proactive approach.  
 
 

 5. CONCLUSIONS 
 
The variable and unpredictable operation times appear as 
one of the most common sources of operational 
uncertainty, which has usually been faced through reactive 
scheduling mechanisms without taking into account any 
information available at the time of reasoning. Instead, a 
proactive scheduling approach is developed in this study to 
account for this uncertainty in general multipurpose multi-
stage batch plants, considering in the decision stage itself 
the main consequences driving the execution process. The 
proactive approach consists of an optimization model based 
on a multi-objective two-stage stochastic formulation. 



 

 158

More robust predictive schedules are identified, with 
significantly reduced expected wait times and acceptable 
line occupation. The use of the expected makespan as the 
formalism for schedule robustness is also assessed by 
evaluating the predictive schedule thus derived. The 
analysis shows that ignoring the eventual effects arising at 
execution time is not realistic, and leads to a significant 
increase in the expected wait times and/or plant under-
utilization. Additionally, criteria based on the concepts of 
absolute, robust deviation and relative robustness are used 
as control measures to manage the risk of poor 
performances. This robust optimization approach imposes 
the worst-case value of these measures as an upper bound, 
i.e., the predictive schedule determined will perform with a 
sum of makespan and wait times lower than the worst-case 
in all the scenarios. The method could be further extended 
by incorporating these metrics in the objective function, 
along with the expected criterion, and analyzing the trade 
of between them. he results of the paper aimed at the 
formalization of the scheduling problem with operational 
uncertainties, highlight the importance of managing the 
uncertainty, as well as its consequences in decision making 
to perform effectively in an uncertain environment. 
However, a single source of uncertainty has been 
considered up to this point, and further research is required 
to improve the performance of stochastic programming 
models for applications of industrial size and complexity. 
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