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Abstract – More complex processes and products must be 
developed in shorter time and reliability must be delivered 
in the first. In order to efficiently obtain performance data, 
yields reasonable estimates of the products life or 
performance under normal operating condition, the paper 
presents a method of reliability test for a multivariable 
process, generating the density function of the reliability by 
means of Bayes procedure. 
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I. INTRODUCTION 
 

Given the strong drive to develop an accurate accelerated 
test model, the stress levels are calculated using operating 
data from a former product near or overlap the normal 
operating range. The planning and execution of life tests 
are based on the product requirements concerning 
reliability and the associated confidence level. Without 
these specifications tests cannot be performed, at least from 
the statistical point of view. Specifically, analysis relies on 
life and stress data or times-to-failure data at a specific 
stress level. The accuracy of any prediction is directly 
proportional to the quality of and accuracy of the supplied 
data. 
The classical theory to determine sampling plans yields a 
large sample-size necessary to demonstrate the product 
reliability (1). Above all, the sample-size increases 
tremendously, if failures have to be taken into account. To 
use all information about the product given through the 
development process the application of Bayes procedure 
(2) is recommended. The reliability demonstration test can 
be planned optimally regarding sample-size and test 
duration, if information from product development is 
utilized. Information about the product lifetime and 
reliability is often available in early stages from fatigue 
damage calculations, preceding tests or the analysis of 
warranty data of a former product which can be treated 
similar with regard to its failure behavior. To consider such 
information in the planning of subsequent reliability tests, 
it is necessary to transform the knowledge into a prior 
distribution of the random variable. In this case the random 
variable corresponds to the product reliability at the 
specified lifetime in the field. Afterwards, the posterior 

distribution of the reliability is generated with the actual 
sample distribution by means of Bayes procedure (2). Here, 
the problems occur on the one hand in the definition of the 
prior distribution and on the other hand in the different 
sources of information that are used within the planning of 
the reliability demonstration test. 
 
 

II. RELIABILITY AS RANDOM VARIABLE 
 

The reliability is a random variable with any possible value 
in the interval [0,1]. In (1) the probability density function  
of the failure probability at a defined time point is given by 
a beta distribution. Hence, the probability density function 
of the reliability can be written as: 
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The parameters of the beta distribution have to be chosen 
as follows: 

1+−= inA  and iB =         (2) 
where n is the sample-size and i is the rank. 
A Weibull distribution in the Weibull net is shown in 
Figure 1.The straight line corresponds to the median value 
determined from the failure data. Supplementary, the 90%-
confidence interval is shown. The confidence interval of 
the Weibull distribution depends on the given data, i.e. the 
sample-size. The confidence interval can be derived from 
the beta probability density function given for different 
failure times. In Figure 1 the beta probability density 
function's are shown for the 5th (rank i = 5), 10th (rank i = 
10), 15th (rank i = 15), 20th (rank i = 20), and 25th (rank i 
= 25) failure time. The shapes of the beta probability 
density function's depend on the rank and the failure time 
respectively.  
If a specification is given for the product reliability, then 
the requirement corresponds to the minimum value of the 
reliability Rmin. In this context, the reliability is associated 
to a fixed time point, such as the specified lifetime ts of the 
product. It must be avoided with a certain confidence to fall 
below Rmin(ts). The confidence level is theprobability that 
the actual reliability R achieves at least the required value, 
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i.e. C = P(R > Rmin). Generally, the confidence level is a 

 
Figure 1: Weibull distribution with beta with probability density 
function for different ranks (T = 1, b = 1.5, n = 30) 
 
one-sided confidence interval, and can be determined as 
follows: 
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The classical procedure to determine the confidence level is 
based on the binomial distribution. The confidence level 
can be calculated by (1): 
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where x failures are observed out of n units.  
The reliability Rmin(t) corresponds to the minimum value 
that has to be achieved by the product at time t. 
To determine sampling plans yields a large sample-size 
necessary to demonstrate the product reliability. Test 
efforts can be reduced if information about the product 
given through the development process is considered. The 
information given before the planning of a reliability test 
has to be available as a prior probability density function 
f(R) of the reliability. Then, the posterior probability 
density function of the reliability is generated with the 
actual sample distribution by means of Bayes theorem (2, 
3): 

( ) ( ) ( )
( ) ( )∫

= 1

0
dRRfREP

RfREP
ERf       (5) 

where P(E/R) is the conditional probability given by a 
binomial distribution: 
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If the prior probability density function of R(t) is assumed 
to have a uniform distribution in the interval [0,1], the 
Bayes theorem yields the confidence level as follows (5): 
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The uniform prior probability density function can be used 
if no other prior information is available. If information 
about the product is given prior to the test, the reliability at 
the specified product lifetime should be quantified as a beta 
probability density function given with Eq. (1). 

 
 

III. DETERMINATION OF PRIOR PROBABILITY 
DENSITY FUNCTION 

 
Proceeding on the assumption that previous knowledge 
concerning reliability is available, it is now necessary to 
define this knowledge by means of a distribution function. 
Subsequently, it will be suggested how to generate a prior 
probability density function from preceding tests, the 
analysis of warranty data of a former product or fatigue 
damage calculations. 
It is considered that prior information is available from 
preceding tests where no or few failures occurred. The test 
results serve for the definition of a beta prior probability 
density function where the parameters are given with Eq. 
(2). If the test is performed without failure, it is assumed 
that the rank is i = 1. This means theoretically that one test 
item is about to fail at the time point of the test end. This 
corresponds to the worst case. The actual first failure can 
occur substantially later. If one failure occurred before the 
test end is reached, it is assumed that the second failure will 
be exactly at the time point where the test end is achieved. 
Generally, the rank is given with i = x + 1,where x is the 
number of failures.The remarks so far are limited to 
preliminary tests, where the test time tt is equivalent to the 
specified product lifetime ts. As a result, the prior 
probability density function is valid for the interesting time 
point, namely the specified product lifetime. To reduce 
sample-size and test duration components are exposed to 
much higher stresses during the test than within their 
normal use conditions.Additionally, it has to be taken into 
account that the test time may vary from the required 
product lifetime. For both cases it is necessary to transform 
the given information into the specified product lifetime in 
order to assure that the beta prior probability density 
function corresponds to the specified lifetime, Figure 
2.Therefore, an acceleration factor  ttt′=χ and a lifetime 
ratio str ttL =  has to be considered(6). In this context, 
the failure distribution of the product has to be estimated.  
Subsequently, the Weibull distribution is used for its 
description (1, 4). 

  
Figure 2: Description of the prior probability density function 
given from an accelerated test up to a test time that is not 
equivalent to the specified lifetime and the prior probability 
density function valid for real use conditions at the specified 
lifetime 
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The required reliability in the field R(ts) depends on the 
reliability at a given test time Rt(tt), the acceleration factor  
the lifetime-ratio Lr, and the shape parameter b of the 
Weibull distribution (5): 

 ( ) ( )( )altts tRtR χ
1

=        (8) 
The general definition of the parameters of the beta prior 
probability density function, given with Eq. (2), is still 
valid. However, it has to be considered that the rank i 
changes due to the given in Eq. (8). The approximation for 
the median rank of the beta distribution 

)4.0/()3( −−= niF  and Eq. (2) yield the parameters of 
the beta prior probability density function:  
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The reliability Rt(tt) in Eq. (9) corresponds to the median 
value that results from the analysis of the preliminary test 
with a confidence level of C = 0.5. For a preliminary test 
without failures the parameters of the beta prior probability 
density function are defined as: 
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A reduction of test efforts may be possible if information 
about the failure behavior of a former product in field 
operation is available. Such information can be generated 
by a statistical analysis of warranty data (7). The failure 
probability at the specified product lifetime is given with: 
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assuming Weibull distributed failure behavior. Eq. (11) and 
the approximation for the median rank yield a dependency 
of the rank on the parameters of the Weibull distribution, 
the required product lifetime and the sample-size. Then, the 
parameters of the beta prior probability density function 
can be obtained by: 
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A fatigue damage calculation yields the product lifetime for 
a certain value of the reliability (1). The desired product 
lifetime in the field may differ. Therefore, the prior 
distribution must be transformed into the relevant time 
point, namely the specified product lifetime. On the 
assumption that the failure behavior is described by means 

of a Weibull distribution, the reliability at the desired 
lifetime can be derived from the results of the fatigue 
damage calculation as follows: 
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In Eq. (13) tcal corresponds to the calculated lifetime, 
F(tcal) to the failure probability given from the Wöhler-
curve (1) and ts to the required product lifetime. The shape 
parameter b has to be estimated. Moreover, it is necessary 
to quantify the reliability determined with Eq. (13) by 
means of a distribution. Subsequently, a piecewise function 
is used as prior distribution (Figure 3) which is 
mathematically written as:  
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The confidence level achieved with the calculation is 
suggested  to be chosen as the confidence level which 
results from the uniform distribution (2) and the required 
reliability R(ts). This approach only makes sense if the 
reliability obtained from the calculation is higher than the 
required reliability. Such an acceptance seems to be 
legitimate, since safety factors are considered in 
calculations. Calculation results should be handled with 
care due to environmental influences which often cannot be 
considered by the calculation but which the product is 
exposed to in the field. Therefore, the confidence of the 
calculation is estimated with a relatively low level 
compared to other suggestions where the confidence is 
estimated with 50% . 

 
Figure 3: Prior distribution given from calculation 
 

IV. CONSIDERATION OF UNCERTAINTIES IN THE 
USE OF PRIOR INFORMATION 

 
When prior information is used there is always the 
uncertainty to what extent the information about the 
reliability is valid for the actual product conditions. If it can 
be assumed that the prior conditions and the actual 
conditions are identical, the prior information about the 
reliability can be totally transferred for the planning of 
reliability demonstration tests. As consequence no 
subsequent reliability demonstration tests would be 
necessary if the required reliability has already been 
reached in the past  
It is obvious that the information of a former product or 
preceding tests may not be totally transferable to the actual 
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product concerning reliability. Due to differences in test 
conditions or environment and function the total use of 
prior information is not recommended. Otherwise there 
exists the risk of failing to meet the product requirements. 
Therefore, it is advisable to consider an uncertainty in the 
information that is given prior to a test. In this context, it 
will be assumed that the prior estimation of the reliability is 
too optimistic. To minimize the risk of missing the product 
requirements, the so-called "decreasefactor" δis introduced 
which artificially reduces the quality level of prior 
reliability information. The consideration of the decrease-
factor yields a modified prior probability density function 
given as follows:  
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The modified prior probability density function in Eq. (15) 
is a beta distribution where the modified beta parameters 
depend on the parameters obtained from prior knowledge 
and the decrease factor. The parameter A0 that is 
determined from prior product information can be 
interpreted as the number of successes out of a trial. The 
higher the number of successes gets, the higher becomes 
the confidence level. To artificially reduce this prior 
confidence the parameter A0is multiplied with the decrease 
factor chosen between 0 and 1, and yields the new 
parameter for the modified prior probability density 
function with 0Aδ . Due to the dependence of the beta 
parameters A0and B0the second modified beta parameter 
becomes 1)1( 0 +−Bδ . The posterior probability density 
function is then determined by Bayes theorem with Eq. (5), 
considering the modified prior probability density function 
from Eq. (15) and the actual sample distribution from Eq. 
(6): 
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The confidence level can be obtained by integrating 
Eq.(16): 
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        (17) 
For a decrease-factor 0=δ  the information given prior to 
the test is not used at all. A decrease-factor 1=δ  yields 
the total usage of the prior information. The introduction of 
the decrease-factor enables the use of prior information but 
reduces the risk of overestimating the prior probability 
density function by decreasing the confidence that is 
actually given from prior knowledge.  
Subsequently, a procedure for the estimation of the 
decrease- factor is suggested for a case where information 
about the failure behavior of a former product is utilized. 
The procedure is based on a pragmatic approach where the 
FMEA (Failure Mode, Effect Analysis) offers a useful 
foundation on condition that a FMEA is available for both 
the former product and the actual product (9). The FMEA 
yields the system structure and the top functions. Failures 
modes, failure causes and failure effects are derived for 

every top function. The top functions are of interest for the 
determination of the decrease-factor. A top function can 
have several failures modes. A failure mode can have 
several failure causes. For every failure mode the most 
risky failure cause is relevant. If the sum of all risk priority 
numbers of the most risky failure causes determined for a 
top function of the actual product is higher than the sum 
determined for the former product, the prior information 
should be rejected. The information should be considered if 
the sum of the actual  product is equivalent or smaller than 
the sum of the former product. This yields an indicator as 
follows:  
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The portability regarding one top function may than be 
determined as follows: 

( ) ( ) 01 =→> ff FpFI   or   ( ) ( ) 11 =→≤ ff FpFI
        (19) 
A vector can be introduced if all top functions of the actual 
product are considered: 

( ) ( ) ( ) ( )( )kff FpFpFpFp ,......,1=     (20) 
there are any additional top functions which were not 
relevant for the former product the portability becomes 
p(Fj) = 0. 
The vector given in Eq. (20) shows the tendency whether 
prior information could be considered or not. The value to 
what extent the information is transferable may be 
estimated by a weighting of the top functions. In this 
context, the occurrence of a failure cause is of interest. 
Every top function can be weighted by: 
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The weighting over all top functions yields a vector 
( ) ( ) ( ) ( )( )kff FwFwFwFw ,......,1=    (22) 

As a result, the decrease-factor is calculated by the scalar 
product of the two vectors given with Eq. (20) and (22) 

( ) ( )Tff FpFw=δ       (23) 
The next step of the research activities will be to develop a 
procedure for the estimation of the decrease-factor 
regarding prior information given from preceding tests 
under different test conditions. 
 
EXEMPLARY APPLICATION 
 
The procedures described in this paper are to be presented 
by means of a synthetic example. The sample-size 
necessary to demonstrate the product requirements has to 
be determined. The product reliability R(ts) = 90% at the 
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specified lifetime ts = 150 is to be proven with a confidence 
level C = 90%. The classical theory yields a sample-size of 
21 if a uniform distribution is considered as prior 
knowledge and no failures occur during the test. This 
number is to be reduced with the use of additional 
knowledge that is supposed to be available from a fatigue 
damage calculation, preceding tests, and the failure 
behavior of a former product.  
It is assumed that a fatigue damage calculation yields a 
reliability of R(tcal) = 99% at a lifetime of tcal = 43. On the 
assumption that the failure behavior is described by means 
of a Weibull distribution with a shape parameter b = 1.3, 
the reliability at the desired lifetime is derived from Eq. 
(13) with Rcal(ts) = 95%. Eq. (14), (5) and (6) yield the 
posterior probability density function which results in the 
following equation for the confidence level: 
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The necessary sample-size is determined by Eq. (24) as ncal 
= 17. The information from the calculation reduces the 
necessary sample-size by ∆ncal = 4 items. The sample-size 
reduction obtained with the calculation can be determined 
by the following formula: 
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It is assumed that prior information is available from a 
preliminary test. The test is performed with acceleration 
and a test time which is not equivalent to the specified 
product lifetime. The test conditions are summarized in 
Table 1. The parameters of the prior beta probability 
density function can be calculated by Eq. (10) which yields 
A01 = 6.28 and B01 = 0.72. 
 
Table 1: Test conditions 

sample-size n0 6 
number of failures x0 0 
lifetime-ratio Lr0 0.5 
acceleration factor 0χ  3 

shape parameter (assumed) b 1.3 
 
Subsequently, it is assumed that failure data of a former 
product is available from use operation. The data is 
analyzed by means of a Weibull distribution where the 
parameters are given in Table 2. The Weibull parameters 
and Eq. (12) yield the parameters of the prior beta 
probability density function A02 = 70.25 and B02 = 5.75 
 
Table 2: Weibull parameters 
shape parameter (assumed) b 1.3 
scale parameter T 1100 
location parameter t0 0 
population size npop 75 
The sample-size necessary to demonstrate the product 
requirements  has to be determined using all prior 

information that is available. For multiple sources of prior 
information the confidence level may be determined by: 
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The information from the calculation is considered by the 
sample-size reduction which is calculated by Eq. (25). If 
the reliability demonstration test is planned by means of a 
test without the occurrence of a failure, the confidence 
level may be found from Eq. (26) with x = 0. The decrease-
factor δ1 regarding the preliminary test results is to be 
estimated with a value between 0 and 1. Figure 4 shows the 
confidence level as a function of the sample-size for 
different values of the decrease-factors. The confidence 
level increases with higher values of the decrease factors  
and higher sample-sizes. According to Figure 4, the 
confidence level reaches the lowest values if the given 
prior information is not considered. In this case, only the 
uniform distribution is used as prior knowledge. If the 
decrease factors are chosen with δ1= δ2 = 0, only the prior 
information given from the calculation is used for the 
planning of the reliability demonstration test. The 
confidence level is higher than the required 90% for every 
value of the sample-size, if the decrease- factors are chosen 
with δ1= δ2= 1. 
Figure 5 shows the sample-size necessary to demonstrate 
the product requirements (R(ts) = 90%, C = 90%). The 
sample size is determined by using the calculation results, 
the results of the preceding test and the knowledge about 
the failure behavior 
of the former product. The decrease-factor regarding the 
preliminary test and the information of the former product 
is estimated with different values. As can be seen from 
Figure 5, the sample-size increases with lower decrease-
factors. For decrease factors δ1= δ2= 0, the necessary 
sample-size is n = 17. The sample-size can be reduced to n 
= 0 if all given information is totally transferable (δ1= δ2= 
1). For other values of the decrease-factors the sample-size 
lies between 0 and 17. Compared with the classical method 
where n = 21 test items are necessary to prove the 
requirements, it is possible to reduce the sample-size if 
prior knowledge is considered. The sample-size is reduced 
by at least 4 test items. For the best case no subsequent test 
would be necessary. However, due to differences in test 
conditions or environment and function the total use of 
prior information is not recommended. To minimize  the 
risk of failing to meet the product requirements the 
decrease-factor should be estimated with lower values than 
1.  
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Figure 4: Confidence level as a function of the sample-size for 
different decrease-factors 

 
Figure 5: Necessary sample-size for demonstrating the product 
requirements 
 
The higher the reliability requirements on a product are the 
more extensive is the test for proving the reliability targets. 
The classical theory to determine sampling plans yields a 
large sample-size necessary to demonstrate the product 
reliability Above all, the sample-size increases, if failures 
have to be taken into account. To use all information about 
the product given through the development process the 
application of Bayes procedure is recommended. The 
reliability demonstration test can be planned optimally 
regarding sample-size and test duration, if information 
from product development is utilized. In this case the 
random variable corresponds to the product reliability at 
the specified lifetime in the field. Afterwards, the posterior 
distribution of the reliability is generated with the actual 
sample distribution by means of Bayes procedure. Here, the 
problems arise on the one hand in the definition of the prior 
distribution and on the other hand in the different sources 
of information that are used within the planning of the 
reliability demonstration test.  
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