INTERPRETATION OF THE GRADIENT AND THE DIRECT DECOUPLING OF THE ADAPTED RESIDUE

M.Pantea, I.M.Gordan, A.M Silaghi

e-mail: mpantea@uoradea.ro, mgordan@uoradea.ro, masilaghi@uoradea.ro,

<u>Abstract</u>: The objectives are quality improvement and cost reduction, because these are more and more important in the industrial applications, especially for automatic systems, because of their increased complexity. The quality concept is not a new parameter in system design: in this way the command who use the statistic method it was used in USA in 1930. The quality administration began in 1970 in Japan and then in 1980 in Europe. The quality improvement and the diagnosis reside in the detection, localization and identification of variances and/or of the faults that affect the electrical system. The diagnosis can be generally defined as being the supervising of an electrical system. This allows the improvement of quality and the reduced intervention cost in different phases in the life cycle of the product.

Keywords: gradient , calculation, faults, parameters

1. INTRODUCTION

For the adapting of the heat residue r_T the gradient calculation is used $\delta_T = \partial r_T / \partial \hat{d}_T$ and it is obtained from the following equation:

$$\begin{bmatrix} \dot{\hat{x}}_{e} \\ \frac{\partial \hat{x}_{e}}{\partial \hat{d}_{T}} \end{bmatrix} = \begin{bmatrix} A(\Omega, \hat{d}_{T}) & 0 \\ \frac{\partial A(\Omega, \hat{d}_{T})}{\partial \hat{d}_{T}} & A(\Omega, \hat{d}_{T}) \end{bmatrix} \cdot \begin{bmatrix} \hat{x}_{e} \\ \frac{\partial \hat{x}_{e}}{\partial \hat{d}_{T}} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \cdot K_{23} \cdot u$$
(1)
$$r_{T} = K_{22} \cdot y_{e} - C \cdot \hat{x}_{e}$$
$$\delta_{T} = \frac{\partial r_{T}}{\partial \hat{d}_{T}} = -C \cdot \frac{\partial \hat{x}_{e}}{\partial \hat{d}_{T}}$$
(2)

 $\delta_{T,k}$ represents locally and a given moment k, the direction in which r_T is moving when \hat{d}_T increases. Suppose that the modelled errors are neglected and that $\hat{d}_T \approx d_T$, δ_T is a very good estimate direction in which d_T (and not \hat{d}_T) acts above them. The component of r_T is parallel to δ_T , notated $r_T^{"}$, is the one that can be expressed with d_T variances. If the \hat{d}_T adapting was perfect, this composition would be null; but in practice, there is always a difference between d_T and the convergency of \hat{d}_T . The orthogonal composition r_T on δ_T , notated r_T^{\perp} is the one that can not be express with d_T variances.

$$r_{T,k}^{"} = \frac{\delta_{T,k}^{T} \cdot r_{T,k}}{\|\delta_{T,k}\|}, \quad r_{T,k}^{\perp} = \frac{\delta_{T,k}^{\perp} \cdot r_{T,k}}{\|\delta_{T,k}^{\perp}\|}$$
(3)

NOTE: in the relation no. (3), the orthogonal direction of the d_T^{\perp} gradient is unique, because δ_T is a vector of dimension 2. The generalization to a superior dimension of 2 is given by:

$$r_{T,k}^{"} = \frac{\delta_{T,k}^{T} \cdot r_{T,k} \cdot \delta_{T,k}}{\delta_{T,k}^{T} \cdot \delta_{T,k}}, \quad r_{T,k}^{\perp} = r_{T,k} - r_{T,k}^{"} \quad (4)$$

The diagram (1) reflects the relative positions of r_T and of δ_T in the two situations: in the first case, the variances of the system parameters are being assimilated with a d_T variance; and in the second case they don't vary.

Diagram 1. The local interpretation of the gradient.

The d_T^{\perp} residue is senzitive to the transitory conections with the estimate onvergency and it remains approximately 0, when the parameters variances are assimilated with d_T (in the first case). The d_T^{\perp} residue is senzitive to all parameters variances not assimilated with d_T (the second case): this residue can satisfy the objectives points for detection. Moreover, the r_T residue and its gradient δ_T are subjected to the same sinusoidal stimuli, (1) and (2). Thereby, r_T and δ_T are two vectors rotating at the same speed ¹ in the (α,β) plan. Consequently, the r_T^{\perp} residue presents a continuous, not null composition when a variance of parameters is produced that is not assimilated with d_T (and null in the opposite case). The presence of the continuous composition allows the use of a down pass elementary filter for the signal increase and for the improvement of the senzitivity in detection. The diagram 2 reflects that the faults L and f_{Ω} can be difficult to detect starting from

The diagram 2: $F_{0,999}$ residue (r_T^{\perp}) for different and simple scenaries (ScSi).

The transitory regime of small amplitude on $r_T^{"}$ for the R (heating) scenario reflects a difference between d_T and the "real" value d_T (diagram 3). On the hole time of existence of peak amplitude (from 2s to 7s) the gradient algoritm <short> shows up after the <real> value of d_T without interceding directly. Therewith, the linear approximate being very good locally, r_T^{\perp} stays null, in these conditions (diagram 2).

Diagram 3: $F_{0,999}$ residue (r_T) for different and simple scenaries (ScSi).

This speed can very well vary in time: for example the behavior to a varying speed MAS((

The r_T^* residue is very weak for the L scenarion (diagram 3). This means that the inductances variances seem very small compared with the resistance variances. This result confirms the graphic study of the senzitivity that we used, where, the area associated to resistance variations considerably increased together with the area associated to inductance variations. On the contrry, the f_{Ω} action is only partially assimilable with this resistance variances, in any place where f_{Ω} is present (between 5s and 6s). This similitude is next to be

confirmed with a new graphic study for senzitivity, in the next paragraph.

In order to study the r_T^{\perp} behavior in more realistic conditions, complexe scenarios (ScSo) were simulated, and the faults are dusplayed in the same time with the resistance variances (heating). Moreover, the resistance variances model dependent on heating (5) is not known (the "aprox." mentioning from diagram 4): when the simulation of the physic system is accomplished with $k_s=k_r$, the generator residue is calculated for $k_s=0.8*k_r$, that is a 20% deviation from the relative magnitude arrangement of the R_s and R_r variances.

$$R_s = R_{s0} \cdot (1 + k_s \cdot d_T)$$

$$R_r = R_{r0} \cdot (1 + k_r \cdot d_T)$$
(5)

Some simulations, which are not presented in this work, show that, on the one hand, the "aprox." effect and the simultaneous presence of R faults on the other hand, does not significantly modify the results of diagram 2. Passing from a simple scenario (ScSi) to a complex scenario (ScCo) influences much more fault senzitivity: variances of 5% thus correspond to the senzitivity limit (diagram 4).

Diagram 4. $F_{0,999}$ residue (r_T^{\perp}) with afferent incertitude of heating model. for simple scenary (ScSi) and complex scenary (ScCo)

II. CONCLUSION:

1) a possible interpretation for the weak influence of "aprox." is as follows: even if the heating model is not so precise, it modells the last one by the resistance variances (and not other parameters) and denotes the fact that the variances are being achieved in the same way (when k_s and k_r have identic signs). Without keeping account of the relative magnitude arrangement of resistance variances, this type of information is important (diagram 4).

2) when the fault is missing, d_T gives an indication about the thermic state of the engine. Let us note that an abnormal highest value of \hat{d}_T can be utilized when deciding to switch off the engine.

The r_T residue and it's orthogonal composition of the gradient, r_T^{\perp} , allow us to perform the objectives of the robust detection, viewing in the same time the charge couple and the different resistance variances induced by a heating. The continuous composition r_T allows fault detection of the "open switch in ondulator" type (f_v) and the electrical current capture type (f_l) and locating this grup of defects. The parameters faults (the engine faults f_P and the translator of rate faults f_Ω) are detected with its assistance.

III. REFERENCES

Books:

- [1] Atanasiu, Gh. Maşini electrice, teorie; performanțe Timișoara, 1994
- [2] Bichir, N., Răduți Ct., Diculescu Ana-Safir Maşini electrice. Pentru subingineri Bucureşti, Editura didactică şi pedagogică, 1979
- [3] Shen Q., Leitch R., *Fuzzy qualitative simulation*. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 4, pp. 1038-1064, 1993.

Chapters:

[4] Basseville M., Detecting changes in signals and systems - a survey. Automatica, Vol. 24, No. 3, pp. 309-326, 1988.

Conference or Symposium Proceedings:

- [5] M.Pantea. Annals of the Oradea University, Fascicle of Management and Technological Engineering 2006, 215-218
- [6] New Tendencis in Diagnosing and Location the Faults of the Asynchronous Motor Using the Static Deision, V.D. Soproni, T. Maghiar, M. Pantea, Laura Coroiu, Nicolina Maghiar, Carmen Molnar. Analele Universității din Oradea, Fascicola Electronică, 2006
- [7] Helga Silaghi, M. Silaghi, Viorica Spoială Efficient Drive System with Synchronous Reluctance Motor, 11th International IGTE Symposium 2004, Graz, Austria

[8] Methods for series resonant inverter design, M.Tomşe,M.Gordan,D.Trip,M.Silaghi, Power and Electrical Engineering,Riga, 2007,ISSN 1407-7345, p.74-86