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Abstract – The paper analyses two main types of 
gyrator-like dc-dc switched converters encountered 
in dc power management. The first type consists of a 
reactive reciprocal two-port network inserted 
between two bridges of ideal switches. The power 
transfer from source to load is controlled by 
modifying the delay between the switching bridges. 
The second type is a buck converter with an 
appropriate sliding mode control, suitable for 
paralleling multiple converters. 
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I. INTRODUCTION 
 
The gyrator as an ideal, lossless nonreciprocal two-
port circuit element has been introduced by the Dutch 
engineer B. D. H. Tellegen [1]. The main property of 
the gyrator, namely the conversion of the network 
connected at the output port into its dual, as seen from 
the input port, was supposed by Tellegen to help 
synthesizing various electrical filters in the field of 
signal processing.  
 
There are many ways to physically implement a 
gyrator. The first gyrator device ever built was based 
on the Faraday rotation effect, and it operates in the 
range of microwaves [2]. In the quest for physical 
gyrators it has been discovered that the Hall effect can 
be used to build gyrators that could operate in a very 
broad range of frequencies [3]. Unfortunately, Hall 
effect based gyrators do not imposed as inductance 
emulators due to their large ohmic dissipation. 
Practical applications of the gyrator at low frequencies 
occurred with the development of active 
semiconductor device technology, especially due to 
the need to integrate large values of inductances. 
Based on transistors and operational amplifiers, many 
practical gyrator circuits have been proposed and used 
[4].   
 
All the gyrator realizations mentioned so far were 
used in the signal processing technique and operates 
time-continuously. On the other hand, in power 
management some dc-dc switching converters that 
have a gyrator-like behavior are being used. Thus, a 
switched double-bridge dc-dc converter behaves as a 

dc gyrator, as long as the mean values of the voltages 
and currents at the ports are considered [5]. Another 
dc gyrator form the same class, based on a switched 
λ/4 transmission line, has also been reported [6]. A 
different class of gyrator-like dc-de converters makes 
use of the sliding-mode control [6, 7, 11]. In contrast 
to the double-bridge converter, which has a natural dc 
gyrator behavior, the second type of converters is 
forced to behave like a dc gyrator by a special control 
loop.   
 
In this paper the dependence of  two-port parameters 
of the double-bridge gyrator on the network’s 
parameters as well as on the switching delay between 
the bridges will be analyzed. Also, the configuring of 
a buck converter as a gyrator using sliding-mod 
control will be explained. 
 
 

II.  BASIC PROPERTIES OF ELECTRICAL 
GYRATORS 

 
An antireciprocal two-port circuit is a special case of a 
nonreciprocal two-port circuit whose parameters 
satisfy a certain condition, usually referred as the 
antireciprocity condition. For example, if the two-
port’s equations are expressed via the short-circuit 
admittances,     
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then the antireciprocity condition is [8] 

2112 YY −= , (2) 
where the passive rule for U and I at both ports has 
been assumed (Fig.1). 
 
The physical meaning of eq.(2) is as follows: if a 
voltage source, connected at the input port, determines 
a current I at the short-circuited output port then, the 
same voltage source, if connected at the output port, 
will determine, at the short-circuited input port, a 
current of the same amplitude but of oposed phase, -I .  
A similar antireciprocity condition results if the 
impedance formalism for the two-port is used: 

2112 ZZ −= . (3) 
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For an ideal gyrator, which is a lossless passive 
antireciprocal two-port network, eqs. (1) become 
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where parameter g is given the name gyration 
conductance and is a constitutive parameter of the 
gyrator. The circuit symbol for a gyrator is shown in 
Fig.1. 

 
Fig.1. Circuit symbol for a gyrator 

 
 Eqs. (4) reveal the two basic properties of an ideal 
gyrator. Thus, if the gyrator is loaded by impedance 
Zs, then the input impedance is given by equation 

s
in Z

rZ 12= , (5) 

where r=g-1 is the gyration resistance. This property 
allows emulating large inductances at low frequencies 
by using a capacitivelly loaded gyrator. On the other 
hand, from eqs. (4) also follows that  

21 PP −= , (6) 
P1 and P2 being the active power at the input, 
respectively the output port of the gyrator. With the 
assumed passive rule at both ports, this means that the 
active power supplied at one port will be recovered at 
the other port. Hence, ideal gyrators belong to a larger 
power processing circuits called POPI (power output 
equals power input).   
 
For power processing circuits not only the POPI 
feature is of relevance, but also is important to 
efficiently control the mean power transferred from 
one port to the other. In the case of gyrators as power 
management circuits, this is achieved by modifying 
the gyration conductance.  
 
Switched gyrators are also described by two-port 
equations with the difference that the currents and 
voltages occurring in these equations represent the 
mean values of the instantaneous variables taken over 
a switching period. Hence, the two-port equations of a 
lossy switched gyrator can be expressed, for example, 
in the form     
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Therefore, switched gyrators can be viewed as dc 
gyrators.  
 
 An equivalent circuit can be associated to eqs. (7), as 
shown in Fig. 2.  

Fig.2. Current sources equivalent circuit of a lossy gyrator. 

A dual equivalent circuit is shown in Fig.3, if the Rij 
parameters are used to describe the gyrator.   

Fig.3. Voltage sources equivalent circuit of a lossy gyrator. 
 
The equivalent circuit in Fig.2 clearly shows that a 
voltage source connected at the input port is seen by 
the load connected at the output port as a current 
source. In distributed power systems often dc-dc 
converters have to be parallel interconnected, as 
paralleling increase the processing capability and 
improve the systems reliability. Current sources are 
very suitable for paralleling and this seems to be the 
main reason to configuring a converter as a gyrator.     
 
 

III. DC-DC CONVERTERS WITH NATURAL 
GYRATOR-LIKE BEHAVIOR 

 
Maybe the simplest switched gyrator is the double 
bridges d.c.-d.c. converter shown in Fig.4.  

Fig.4. Schematics of the double-bridge converter 
It consists of two switching bridges, linked by a 
reactive reciprocal two-port network, used for 
temporary storage of energy. 

Fig.5. The storage network of the converter 

The switching sequence for the input bridge is as 
follows: first, S11 is closed synchronously with S14 
then, after a time interval of T/2, S12 and S13 are closed 
and, at the same moment, S11 and S14 are opened; after 
a time interval of T/2 the sequence starts again and so 
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on. The switches of the output bridge follows the same 
switching sequence as the input bridge, but delayed by 
a time interval TD. Further, we will assume that at the 
converter ports are connected two dc voltage sources, 
of magnitudes U1, respectively U2. 
Therefore, assuming that the switches S11, S12, …, S24 
are ideal, the ports of the reciprocal two-port network 
are fed with rectangular voltages, ua and ub, with 
magnitudes U1, respectively U2, delayed by a time 
interval TD (Fig.5) 
 Our goal is to derive the dc two-port equations of 
this converter and the necessary conditions for 
gyrator-like behavior. The analysis, which is given in 
details in [9, 10] is based on the Fourier spectral 
decomposition of the rectangular voltage waveforms 
of the equivalent sources; this allows expressing the 
currents ia (t) and ib (t) in terms of the reciprocal two-
port network parameters. Then, the currents i1(t) and 
i2(t) at the converter’s ports can be expressed in terms 
of ia and ib which eventually yields the mean currents 
I1 and I2 by integrating over a period T: 
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where 
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The storage network being reciprocal, 
)k()k( GG 2112 = ,   )k()k( BB 2112 = , (13) 

hence eqs.(11, 12) become 
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The dc two-port driving point conductances (eq.9, 10) 
do not dependent on the time delay TD. For a lossless 
reciprocal network G11=G22=0 and eqs.(8) correspond 
to a lossless nonreciprocal two-port: 
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with G12 and G21 given by eqs.(14, 15).  These transfer 
conductances depend both on the nature of the 
reciprocal network elements, as well on the time delay 
TD. If the reciprocal network is composed solely of 
inductances and/or capacitances, then  
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which corresponds to an ideal dc gyrator.  
 
On the other hand, if TD = T/4 then the converter 
behaves like a gyrator irrespective of elements of the 
reciprocal network. If TD = 3T/4 then the dc transfer 
conductances swap signs. This is an important 
property of the switched gyrator as it can be seen from 
equations  
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that for a lossless reciprocal network the sign of the 
transfer conductances determines the direction in 
which the mean power flows from one port to the 
other. Not only can the direction of the flow be 
controlled by TD but also the magnitude of the 
transferred mean power. For example, if TD=0 or T/2, 
there is no mean power transfer from one port to the 
other. A net power transfer takes place if TD∈(0, T/2) 
or TD ∈(T/2, T). If TD belongs to the first half period, 
the mean power is transferred from the input port to 
the output port, whereas for TD belonging to the 
second half period results in an opposite power 
transfer direction. It is conjectured that for a given 
network, the maximum mean power transferred from 
one port to the other, occurs when TD=T/4, 
respectively TD=T/2+T/4=3T/4. Consequently, 
controlling the time delay TD represents an efficient 
modality to manage the power transfer between two 
energy reservoirs. In this case the reciprocal network 
may consist from just one reactive element – a series 
inductance or a parallel capacitance – as in [5]. In 
some applications the reciprocal network may be 
replaced by a λ/4 transmission line [6].  This is a 
predictable result as a transmission line can be 
approximated by a cascade of Γ or Π LC two-ports.  
  
 

IV. DC-DC CONVERTERS WITH FORCED 
GYRATOR-LIKE BEHAVIOR 

 
By making use of a sliding-mode control, some dc-dc 
converters can be forced to show a dc gyrator-like 
behavior [11]. This idea will be illustrated with 
reference to the ideal buck converter shown in Fig.6, 
where a continuous-conduction mode will be 
assumed. As can be seen, the standard buck topology 
has been supplemented with a LC input filter in order 
to reduce the EMI level. In the state-space this circuit 
represents a 4-th order dynamical system, the state 
vector being x= [iL1, iL2, uC1, uC2]t. Kirchhoff’s laws 
and constitutive relations yield the state equations of 
the system:  
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where σ(t) is a discrete switching variable: σ(t)=1 if 
t∈Ton (Sw closed), respectively σ(t)=0 if t∈Toff  (Sw 
opened).  

Fig.6. The buck converter with sliding-mode control 
feedback 

If we choose the switching surface for sliding-mode 
control as S = iL2-gu1 (u1=Us), and impose the 
stationarity conditions S=0 and dS/dt = 0, then eq.(20) 
yields  

sL gUi =2  and 
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Substituting eq.(23) in eqs.(19), (21) and (22) 
eventually leads to the converter dynamics under 
sliding-mode control: 
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Due to eq.(25), this is a nonlinear dynamical system. It 
is interesting to note, as equation (26) shows, that the 
dynamics of uC2 is not related to the rest of the state 
variables – it increases exponentially with a time 
constant RC2 towards the steady-state value gRUs.     

The fixed point x* of this dynamic system, which 
corresponds to the steady-state regime, results by 
equating to zero the right sides of eqs.(24)-(26): 
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From the port conditions 

R/ui,uu,Uu,ii cCsL 2222111 ====  (28) 
and the control condition sL gUi =2 , it follows for 
the steady-state regime that   

21 gUI = ,   12 gUI = . (29) 
These equations correspond to an ideal dc gyrator; the 
missing “-“sign in the second equation is due the to 
active sign rule chosen this time for the output port 
(Fig.6).  It should be noted that as 0<σ<1, from 
eqs.(23) and (27) follows that the gyration 
conductance is related to the load resistance by the 
condition gR<1. 
 
To conclude the analysis we have to check the 
stability of the fixed point, that is of the steady-state 
behavior of the dc gyrator. To this purpose we  have to 
compute the Jacobian matrix of the nonlinear 
dynamical system (24)-(26): 

( )

*xCCL

CCL

CCL

*
F

u
f

u
f

i
f

u
f

u
f

i
f

u
f

u
f

i
f

xJ

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

2

3

1

3

1

3

2

2

1

2

1

2

2

1

1

1

1

1

, (30) 

where f1, f2 and f3 are the corresponding right sides of 
eqs. (24)-(26).  Solving the characteristic equation 
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yields the eigenvalues 
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The first eigenvalue asses the exponentially 
stabilization of uC2, as noted before. The remaining 
two are positive real numbers if 
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respectively complex numbers with positive real parts, 
for the opposite case; in each case the fixed point is 
unstable. The stabilization of the fixed point can be 
made either inserting a compensation network in the 
feedback loop or adding a damping network to the 
L1C1Us loop. 
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Fig.7 

 
 
A simple solution for stabilizing the fixed point 
consists from connecting a series RdCd circuit in 
derivation with the capacitor C1. In steady-state 
operation, due to the capacitor Cd, this branch is 
interrupted and therefore the fixed point would be the 
same as that of the original circuit.  
 
The resulting 4-th order dynamical system also has the 

21 /1 RC−=λ  eigenvalue; the remaining three are the 
solutions of the equation  
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According to Routh-Hurwitz theorem, the necessary 
and sufficient condition for this equation to have 
negative real part solutions is that the principal minors 
of the associated Hurwitz matrix should be positive 
[12]:  

32121 ,0,0 bbbbb >>> , (34) 

where b1-b3 are the coefficients of λ2
 to λ0, in this 

order. From eqs.(34) appropriate values for the 
damping RC circuit can be chosen. 
 
To asses the gyrator-like behavior of the sliding mode 
controlled modified buck converter, a 
Simulink/SimPowerSystems model has been setup, as 
shown in Fig.7, where Us=20 V, R=1 Ω and g=0.5. 
The simulation results are shown in Fig.8. As 
expected, the steady-state value of the output current 
is gUs=10 A. 
 
Sliding-mode control can be used to force other 
topologies, like boost or cuk, to behave like a dc 
gyrator [11].  
 

 

 
Fig.8 

 
A possible application of gyrator-configured dc switch 
converters, where the controlled current source output 
nature of gyrators may be advantageous, is in the 
management of distributed power systems [11]. In this 
case, paralleling n gyrator-like dc converters simple 
means the addition of the output currents gkUsk (k=1, 
2,…,n) of the individual converters, as shown in Fig.9. 
However, for each individual gyrator to evolve along 
the imposed sliding surface, the corresponding control 
variable σk must be in the [0, 1] interval, which yields 
the constrain  
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If all the input sources have the same value, as well as 
all gyration conductances, rel.(35) becomes 

nR
g 1
< . (36) 
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Different distribution strategies for the currents are 
possible due to the fact that each output current is 
independently controlled [11]. 

 
Fig.9 

 
Although different converter topologies can be used 
for paralleling purposes, the buck gyrator-like 
converter seems to be the best choice, as demonstrated 
in [11]. 
 
 

V. CONCLUSIONS 
 
The paper analyses two types of gyrator-like dc-dc 
converters which are used in dc power management. 
The first one, which has an unforced dc gyrator-like 
behavior, is operated at constant frequency. The dc 
power transfer from one port to the other can be 
simply and efficiently controlled by varying the time 
delay between the switched bridges. The gyrator-like 
behavior of the second converter type is forced with 
an appropriate sliding-mode control. This converter 
type is suited for applications implying paralleling of 
converters in distributed power systems, voltage 
regulation and impedance matching. 
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